

February 13, 2024

File No.: 28847

North Vancouver School District #44 2121 Lonsdale Avenue North Vancouver, BC V7M 2K6

CLOVERLEY ELEMENTARY SCHOOL, NORTH VANCOUVER, BC GEOTECHNICAL REPORT – REVISION 4

Dear

As requested, Thurber Engineering Ltd. has completed a supplementary geotechnical investigation for the Cloverley Elementary School project. This report provides our geotechnical recommendations for the design and construction of the proposed school based on the findings from our recent and previous geotechnical investigations. The geotechnical recommendations provided in this report supersede any previously provided by Thurber via reports or emails.

This letter was prepared for the exclusive use of the North Vancouver School District No. 44 (NVSD). Any use which a third party makes of this letter, or any reliance on decisions based on it are the responsibility of such third parties. Thurber accepts no responsibility for damage incurred by third parties as a result of decisions made or actions taken based on this letter. It is a condition of this letter that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

1. BACKGROUND

NVSD is planning to construct a new elementary school at 440 Hendry Avenue, North Vancouver. Conceptual architectural drawings provided by NVSD indicate that the proposed school will have two stories with no basement. We understand that this project is to be designed per the 2024 British Columbia Building Code (BCBC). Thurber is providing geotechnical services for the project with DA Architects + Planners, Aspect Structural Engineers (Aspect), KM Civil Consultants Ltd., and AMR Systems Ltd. providing architectural, structural engineering, civil engineering, and landscape services, respectively.

The property is about 7.3 acres in area and currently occupied by the decommissioned Cloverley Elementary School at the west side, a gravel field and treed areas at the center, and Cloverley Park at the east side. The site is surrounded by Hendry Avenue to the west, Shavington Street to

the south, Kennard Avenue to the east, and Cloverley Street to the north. The site slopes down at about 20° from Cloverley Street to the current school grade at which point the ground is generally flat for about 50 m before sloping down at about 20° from school grade to Shavington Street. The proposed building footprint is about 30 m by 100 m and trends southwest-northeast from the gravel field to Cloverley Park.

2. SURFICIAL GEOLOGY

Based on the Geological Survey of Canada's surficial geology map 1486A, the surficial sediments in the project area generally comprise Vashon Drift and Capilano Sediments (VCb) which include lodgment and minor flow till, lenses and interbeds of substratified glaciofluvial sand to gravel, and lenses and interbeds of glaciolacustrine laminated stony silt; bedrock is likely more than 10 m below ground surface.

3. SITE RECONNAISSANCE

On September 26, 2023, **Constant and Thurber completed a site reconnaissance of the tennis court area at the west side of Cloverley Park.**

An approximately 36 m long cast-in-place (CIP) concrete retaining wall runs along the north side of the tennis court area. The wall retains a 3H:1V treed slope that extends up to Cloverley Street. The CIP wall may be a cantilever base design with an exposed wall height of about 2.75 m. Based on our visual observations the CIP wall appeared to be in fair to good condition. Some signs of fissures and hairline cracks were observed along the wall with signs of minor spalling in the concrete, possibly from poor drainage behind the wall. The wall and slope above had no visual signs of potential instability.

An approximately 37 m long split face lock block retaining wall runs along the south side of the tennis court area, retaining the south portion of the courts. The lock block wall height varies from about 1 m to 2 m high (from west to east). Based on our visual observations, the overall condition of the lock block wall appeared to be good with no visible signs of distress.

4. GEOTECHNICAL INVESTIGATIONS

Thurber completed geotechnical investigations for the project in 2021 and 2023. A summary of the work completed at each test hole location is shown in Table 4.1. The approximate locations of the test holes are shown on Drawing No. 28847-1.

Test Hole Name	Test Hole Type	DCPT	Final Depth (m)	Monitoring Well
CPT21-01	CPT	N/A	3.0	N/A
TH21-02	Auger	Yes	6.1	No
TH21-03A	Auger	No	2.0	No
TH21-03B	Auger	No	3.1	No
CPT21-03	CPT	N/A	1.2	N/A
TH21-04	Auger	Yes	9.1	No
TH21-05	Auger	Yes	9.1	Yes
TH21-06	Auger	No	9.1	No
CPT21-06	CPT	N/A	6.1	N/A
CPT21-07	CPT	N/A	6.0	N/A
TH21-08	Auger	No	5.5	No
CPT21-08	CPT	N/A	4.5	N/A
TH21-09	Auger	Yes	7.6	No
TH21-10	Auger	No	6.1	No
CPT21-10	CPT	N/A	2.5	N/A
TH21-11	Auger	Yes	9.1	Yes
TH21-12	Auger	Yes	6.3	Yes
TH21-13	Auger	Yes	6.4	No
TH23-01	Sonic	No	29.0	No
TH23-02A	Auger	No	2.7	No
TH23-02B	Auger	Yes	3.4	No
TH23-03	Auger	Yes	4.0	Yes
TH23-04	Auger	Yes	2.7	No
TH23-05	Auger	Yes	5.8	Yes
TH23-06	Auger	Yes	7.2	No

Table 4.1: Test Hole Summary

4.1 2021 Investigation

Thurber completed a geotechnical investigation in 2021 as part of a previous phase of the project. The geotechnical investigation consisted of six cone penetration tests (CPTs), 11 solid stem auger test holes, and three monitoring wells. Dynamic cone penetration tests (DCPTs) were completed adjacent to seven of the test holes. The 2021 geotechnical investigation was completed throughout the site. The logs of the 2021 Thurber test holes and the 2021 CPT testing report are attached. Details of the investigation can be found in Thurber's report titled "440 Hendry Avenue, North Vancouver, BC. Geotechnical Report" dated May 25, 2021.

4.2 2023 Investigation

The 2023 investigation consisted of drilling seven test holes at select locations within or near the proposed school building area. One sonic test hole (TH23-01) was drilled to 29.0 m depth on October 5, 2023 using a track-mounted sonic drill rig. Six solid stem auger test holes (TH23-02A, TH23-02B and TH23-3 to TH23-06) were drilled to depths between 2.7 m to 7.2 m on

October 6, 2023 using a track-mounted auger drill rig. The drill rigs were operated by Downrite Drilling Ltd. DCPTs were completed at all auger test hole locations except for TH23-02A.

A 50 mm diameter PVC casing was installed to a depth of 27.6 m at TH23-01 for downhole seismic testing. Due to premature sonic casing refusal on account of soil heaving, installation of the downhole seismic testing casing could not be completed to the target 30 m depth.

Monitoring wells (50 mm diameter) were installed at TH23-03 and TH23-05 with well screen depths of 2.3 m to 3.8 m and 3.7 m to 5.2 m, respectively.

The soil conditions encountered in the test holes were logged in the field by an experienced geotechnical technologist and representative disturbed samples were collected for routine water content and visual classification in our laboratory. Three selected samples were subjected to grain-size distribution testing using the hydrometer analysis method in accordance with ASTM D422; the grain size distribution test results are attached. Selected samples were submitted for environmental analytical testing.

The test holes were sealed in general accordance with groundwater protection regulations. Excess drill cuttings were drummed and removed offsite for disposal.

The test hole coordinates were obtained by Thurber using a handheld GPS.

4.2.1 Downhole Seismic Testing

The downhole seismic testing was completed in a 50 mm diameter PVC pipe grouted in place using a bentonite-cement grout intended to have a stiffness comparable to the in-situ soil stiffness when set. Downhole seismic testing (DST) was completed by Thurber representatives for TH23-01 on October 12, 2023.

The DST was carried out in accordance with ASTM D7400/D7400M-19. It involved lowering the geophone to the desired depth and clamping it to the side of the casing to ensure the geophone is in contact with the PVC casing. A 150 mm x 150 mm x 2.45 m timber beam was placed 0.94 m away from the PVC casing to act as a seismic source. To provide sufficient connectivity between the beam and the ground surface, the beam was weighed down using a Thurber pickup truck parked on top of the beam. Once the geophone was in place, the beam was struck and the time interval for the signal to reach the geophone was recorded. This procedure was repeated at all required depths.

Shear (S) wave tests were conducted on 1.0 m intervals. The maximum depth recorded for TH23-01 was 27 m. At each test depth a minimum of three strikes were conducted on each end of the beam. The multiple strikes allow removal of noise from passing vehicles by filtering the data and plotting the repeated signals facilitates interpretation of the data by making the first arrival time more prominent.

A high frequency filter was used during data processing. This removed the higher frequency vibrations and noise that was recorded. However, some signals remained too noisy and were omitted from the profile. The final profiles have intervals between 1 m and 2 m depth, depending on the quality of the recorded signal.

The full velocity profile is attached in tabular and graphical forms.

4.2.2 Groundwater Level Monitoring

On October 12, 2023, groundwater levels in the monitoring wells at TH23-03 and TH23-05 were read using a water level meter. At the time of reading, the wells were dry.

Automatic water level dataloggers (Solinst Leveloggers) were installed in the monitoring wells at TH23-03 and TH23-05 to record continuous water level readings at 30 minute intervals. An automatic barometric pressure datalogger (Solinst Barologger) was installed in TH23-05 to record continuous barometric pressure readings at 30 minute intervals. The barometric pressure readings will be used to compensate water level readings recorded by the water level data loggers. The dataloggers will remain in the monitoring wells for a period of about one year to assess the seasonal groundwater conditions.

5. SUBSURFACE CONDITIONS

The attached test hole logs provide a complete, detailed description of the conditions encountered and should be used in preference to the generalized description given below.

In general, the soil profile included the following (from top to bottom):

- <u>Surficial soils</u> This layer comprised topsoil, asphalt, and mixed fill materials ranging from gravel, sand, and silt. The surficial soils extended up to about 1.4 m depth however in most of the test holes the thickness of this layer was less than 0.5 m.
- <u>Silt</u> Below the surficial soils, a silt layer with variable gravel, sand, clay and organic content was present. The consistency of this material was variable, ranging from soft to hard but can typically be considered firm. This material is potentially compressible.

- <u>Till-like soil</u> This material generally comprised dense to very dense, silty sand with variable gravel content. In our experience, boulders and cobbles may be present in this layer. Between the overlying silt layer and till-like soil, a weathered zone of till-like soils was encountered in some of the test holes. The interpreted elevation of the top of till-like soil at each test hole location is shown on Drawing No. 28847-2. The contours presented on this drawing were developed for the sole purpose of estimating depth to till-like soil, the plan is not intended to be a topographic contour plan for the site. The top surface of the till-like soil generally appears to be dipping southeast towards Shavington Street which is expected based on the overall site topography.
- <u>Deep deposits</u> In the deepest test hole, TH23-01, soils generally comprising dense sands interlayered with very stiff silt containing variable gravel content were encountered within and below the till-like soil.

The water levels in the 2021 monitoring wells were measured on May 10, 2021. The depth to water below the ground surface at TH21-05 was 5.55 m, at TH21-11 was 3.85 m, and at TH21-12 was 5.05 m. The water levels in the 2023 monitoring wells were measured on October 12, 2023; the wells were dry at the time of measurement. Groundwater levels are expected to vary in response to seasonal precipitation, infiltration, and drainage conditions. We anticipate that groundwater is likely perched above the low permeability silt and till-like layers.

6. ENVIRONMENTAL ASSESSMENT

As recommended in our Phase I Environmental Site Assessment (P1ESA) report dated June 1, 2020, we completed opportunistic environmental soil sampling during the geotechnical investigations in 2021 and 2023. Select samples were submitted for laboratory analyses for Potential Contaminants of Concern (PCOCs) related to fill material from unknown sources. The objective was to characterize the soil's environmental quality and classify it for potential future soil relocation or disposal requirements.

6.1 Regulatory Context

In British Columbia, environmental matters pertaining to contaminated sites are within the jurisdiction of the Ministry of Environment and Climate Change Strategy (ENV), pursuant to the *Environmental Management Act (EMA)* (SBC 2003, Chapter 53 Assented to October 23, 2003, as amended on July 8, 2004). The key *EMA* regulation relating to the assessment and remediation of contaminated sites is the Contaminated Sites Regulation (CSR), BCC Reg. 375/96 OCC 1480/96, including amendments up to BCC Reg. 133/2022, June 6, 2022. Based on the future use of the site as a school, Residential Low Density (RLD) standards apply to site soils.

To characterize the soil for future excavation and potential off-site relocation purposes, the analytical results were compared to the Agricultural Land Use (AL, generally most stringent), Residential Low-Density Land Use (RLD), Urban Park (PL), Commercial (CL) and Industrial Land Use (IL). The following site-specific exposure pathways were applied:

- Intake of contaminated soil;
- Toxicity to soil invertebrates and plants;
- Livestock ingesting soil and fodder,
- Major microbial functional impairment,
- Groundwater used for drinking water;
- Groundwater used for livestock watering,
- Groundwater used for livestock watering, and,
- Groundwater flow to surface water used by aquatic life (freshwater and marine).

6.2 Soil Sampling and Field Screening

Environmental soil samples were collected from nine of the solid stem auger test holes in 2021 (TH21-02, TH21-05, TH21-06, TH21-08 through TH21-13) and at five of the test holes in 2023 (TH23-02, TH23-03, TH23-04, TH23-05 and TH23-06) at maximum depth intervals of 0.9 m. Each sample was then split into a field screening portion and a laboratory analysis portion.

The field screening portion of the sample was placed into a clean plastic bag and allowed to equilibrate to ambient temperature for at least 20 minutes. The vapour concentration in the headspace above the soil sample in the plastic bag was then measured using a Mini-RAE photoionization detector (PID). The maximum headspace vapour concentration for all soil samples was 13.3 parts per million by volume (ppm/v) measured in TH21-08. The headspace readings are shown on the test hole logs. Based on our observations, no visual or olfactory evidence of hydrocarbon impacts was noted.

The laboratory analysis portion of the sample was placed into clean laboratory provided glass containers and placed into a cooler with ice prior to being submitted to CARO Analytics (CARO). All soil samples and containers were handled wearing disposable nitrile gloves and any sampling tools utilized were cleaned with distilled water between uses. Soil samples were selected for analysis based on field observations, the field screening results and to provide general coverage.

6.3 Soil Analytical Program

One sample from each of TH21-08, TH21-09, TH21-11, TH21-13 and TH23-02 to TH23-06 (nine samples total) were selected for laboratory analytical testing. These test holes were located across the site, both in areas where historical fill material was reported to have been placed and in the planned footprint of the proposed school building. The samples were selected from depths

ranging between 0.2 m and 1.8 m below ground surface and submitted to CARO for laboratory analysis of Light and Heavy Extractable Petroleum Hydrocarbons (LEPH and HEPH), Polycyclic Aromatic Hydrocarbons (PAH), and metals. Based on the field screening results, none of the samples were analyzed for Volatile Organic Compounds (VOC).

The analytical results are tabulated in the tables appended to this report and compared to the applicable CSR standards. Copies of the laboratory analytical certificates are included in the attachments.

6.4 Soil Results Discussion

Based on the analytical results from 2021, there were no PCOC concentrations reported above the AL, RLD, PL, CL or IL land use standards. Analytical results received for 2023 samples indicated one confirmed exceedance:

• TH23-04-03 and duplicate: Iron (maximum 40,800 µg/g) exceeding the RLD/PL standards and applicable background concentration at a depth of 1.4 to 1.5 m bgs.

Re-analysis of sample TH23-04-03 and its duplicate was completed and of the four additional results, half of them exceeded the applicable standard and half were below. It is noted that the sample was collected from the native silt layer. Based on these observations, exceedances may be the result of natural background variation.

A statistical assessment of surficial site soils was completed. When assessed as a population using the highest exceeding value for TH23-04-03, the iron concentrations produce a lognormal distribution which is typical for background concentrations. The concentrations have an upper 90th percentile of 28,740 μ g/g and an upper 95% concentration limit of 25,205 μ g/g. As both these values are less than the standard and the highest concentration found is less than twice the standard, the site soils as a population are not considered contaminated.

7. ENVIRONMENTAL RECOMMENDATIONS

One iron exceedance of the applicable RLD standards was identified at the Site (location TH23-04). Based on further analysis this is likely to be due to natural variation in background concentrations and Site soils are not considered contaminated. All other samples met the applicable standards for disposal to agricultural or residential lands.

It should be noted that receiving sites may consider soil in the area of TH23-04 to exceed RLD standards. If off-site disposal is required, a targeted removal of soil from this area for disposal at a separate facility may be required prior to bulk excavation with sampling to confirm clean soils around the perimeter. For further certainty, additional drilling or test pitting could be completed to

delineate the iron exceedance prior to beginning work at the site. This soil could also be considered for re-use at the site.

8. **GEOTECHNICAL RECOMMENDATIONS**

8.1 General

Based on the attached architectural concept plan dated July 14, 2023 provided by NVSD, we understand that the proposed school will include a gravel play field, play areas, school building, parking lot, and driveway. The contemplated main floor elevation of the proposed school building is 50 m. Based on our review of the survey information provided by NVSD soil removal will be required to establish the grade required for the proposed school building. A grade reduction of about 3 m to 4 m and 0 m to 2 m to the west and east of the tennis court area, respectively, will be required.

The till-like soils are considered to be suitable foundation bearing materials. The soils overlying the till-like soil are potentially compressible and not considered suitable foundation bearing materials. The elevation of the till-like soil is likely variable within the proposed building footprint. On average, the top of till-like soil was encountered at about elevation 48 m within the test holes inside the proposed school building footprint. Considering the proposed school building floor elevation of 50 m, conventional pad and strip footings (i.e. shallow foundations) bearing on till-like soil or compacted structural fill overlying till-like soil is considered to be an appropriate foundation design strategy for this project.

During our investigation we were able to characterize the subsurface conditions on either side of the tennis courts. However, the subsurface conditions below the tennis courts are unknown but expected to be similar to those on either side.

The Province of British Columbia anticipates adopting the 2020 edition of the National Building Code of Canada (NBC) on March 8,2024. We understand that the proposed school building will be designed in accordance with the 2024 British Columbia Building Code (BCBC).

8.2 Seismic Assessment

8.2.1 Seismic Hazard

The seismic hazard used in the BCBC is based on the NBC. The 2018 BCBC uses the seismic hazard from the 2015 NBC and the 2024 BCBC uses the seismic hazard from the 2020 NBC.

Per the British Columbia Ministerial Order No. BA 2023 10 dated November 24, 2023, the 2024 BCBC seismic hazard will not be applicable until an effective date of March 10, 2025. Based

on our discussions with Aspect, we understand that the proposed school building is planned to be designed based on the 2018 BCBC seismic hazard. We have included the seismic hazard from both the 2018 and 2024 BCBC in this report.

Based on the shear wave velocity profile obtained from downhole seismic testing at TH23-01, the average shear wave velocity in the upper 30 m (V_{S30}) is interpreted to be 369 m/s. This corresponds to Site Class C from Table 4.1.8.4.-A of the 2018 BCBC and Table 4.1.8.4.-B of the 2024 BCBC. The shear wave velocity from 27 m to 30 m depth could not be measured due to drilling refusal, therefore the shear wave velocity in this depth range was inferred by extrapolating the value from 26 m to 27 m depth. This approach is considered conservative as shear wave velocity typically increases with depth.

8.2.1.1 2018 BCBC Seismic Hazard

The 2018 BCBC seismic hazard was determined using Natural Resource Canada's (NRC's) 2015 NBC seismic hazard calculator. The output from the calculator is attached. Since this site is classified as Site Class C, the seismic hazard from NRC's calculator can be used directly without adjusting them for site-specific properties.

8.2.1.2 2024 BCBC Seismic Hazard

The 2024 BCBC seismic hazard values corresponding to a V_{S30} of 369 m/s for the 1 in 2475-year return period earthquake obtained from NRC's 2020 NBC seismic hazard calculator are provided in Table 8.1.

	NBC 2020 – 2%/50 Years (0.000404 per annum) Probability						
Sa(0.2, X ₃₆₉)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
1.03	0.816	0.474	0.289	0.083	0.0356	0.448	0.496

Table 8.1: 2020 NBC Seismic Hazard Calculator Output

8.2.2 Liquefaction

Based on the 2021 CPTs, most of the site is considered to have low risk of liquefaction during a seismic event. Potentially liquefiable soils were identified in CPT21-06 and CPT21-07 at about 6 m depth. The post-liquefaction vertical settlements are estimated to be negligible (under 25 mm). If the proposed school building is founded on till-like soils, potentially liquefiable soils will have been removed and the consequences of liquefaction will have been effectively mitigated. Given the density, grain size distribution, and expected age, the soils below till-like deposits are not considered to be liquefiable during a seismic event.

8.3 Slope Stability

The slopes around the property are generally around 3H:1V. Slopes shallower than or equal to 3H:1V are generally stable. In addition, the slopes within the property are covered in vegetation which have a positive influence on slope stability due to root systems that reduce erosion and sloughing potential from surface water. The general topography slopes from the northwest to the southeast.

We completed a pseudo-static slope stability analysis to assess the stability of the 3H:1V slope above the proposed school building. Based on our analysis, the slope is expected to be stable under the 1 in 2475-year return period earthquake.

8.4 Site Preparation

Site preparation should include demolition of the existing structures, removal of existing pavements/fill materials and construction debris, clearing and grubbing of all vegetation, and stripping of all topsoil and deleterious soils from the building area. Utilities and existing trench fill should also be removed from the footprint of the proposed school building. The site should then be excavated to design grades. Any remaining surficial topsoil, fill, and underlying silt should then be removed to expose the till-like soil. Once this is complete, Thurber should review the exposed ground surface and advise on the extent of any additional subexcavation which may be necessary.

All excavations should be undertaken using an excavator equipped with a smooth clean out bucket. Once exposed, the subgrade soils will be vulnerable to moisture. To protect the subgrade, the site should be contoured to promote drainage and traffic/workers should be directed around areas of exposed subgrade. Where work on the exposed subgrade is necessary it should first be covered with a 150 mm lift of compacted structural fill or 75 mm layer of blinding concrete.

8.5 Groundwater Seepage

Groundwater may seep into proposed excavations. We expect that the rate of groundwater flow into excavations during construction will be minimal and that using conventional sumps and pumps should be feasible to manage groundwater.

8.6 Fill Placement

Where necessary, excavations may be backfilled, and site grades raised using structural fill. Structural fill material should comprise clean, well-graded granular soil such as clean (less than

5% passing the #200 sieve) pit run gravel (maximum particle size 75 mm) or select granular subbase as defined in the Master Municipal Construction Documents (MMCD). Structural fill materials must be free of organics and other deleterious material. Samples or representative gradation curves of any proposed material should be submitted to Thurber for review and approval prior to use.

Structural fill should be placed in maximum loose lifts of 300 mm, compacted to a minimum of 100% standard Proctor maximum dry density (SPMDD) using suitable equipment. Quality assurance field compaction tests should be carried out by Thurber to confirm adequacy of the fill compaction. The contractor will be responsible for completing quality control testing.

The shallow soils on site comprise variable surficial soils, silt, and till-like soil. Due to their generally variable fines content, we do not consider these soils to be suitable for use as structural fill below footings. These soils could likely be re-used in areas of soft landscaping.

8.7 Foundation Design

The proposed school building can be founded on pad and strip footings bearing on till-like soil or on compacted structural fill overlying till-like soil. The serviceability limit state (SLS) and factored ultimate limit state (ULS) bearing resistances for footings founded as discussed are provided in Table 8.2. The SLS bearing resistance is based on less than 25 mm of settlement. The 2024 BCBC allows for a seismic overstrength factor of 1.5 to be applied to the factored ULS bearing resistance under seismic loading conditions.

Table 8.2: SLS and ULS Bearing	Resistances
--------------------------------	-------------

Bearing Material	SLS Bearing Resistance (kPa)	ULS Factored Bearing Resistance (kPa)
Structural Fill	150	200
Till-like soils	230	350

Strip footings for the building should be at least 450 mm wide and pad footings should have a minimum dimension of 600 mm. For confinement and frost protection purposes, all footings should be located a minimum of 450 mm below grade. Footings should be installed on level ground and any loads must be concentrically and vertically applied to the footing.

Footings founded at shallow depths may impart stresses onto adjacent foundations, utilities, etc. Bridging, deepening, or utility relocations may be required to address this. Footings should be located such that the risk of significant stress increase on the adjacent footings or foundation walls is mitigated. Footings should generally be founded below a plane projected up at 2H:1V from any lower footing excavation or load-sensitive structure.

The sliding of foundations should be resisted by friction at the interface between concrete and the foundation soils. We recommend using a factored ULS coefficient of friction of 0.36 for footings founded on structural fill or till-like soils.

From discussions with Aspect, we understand that seismic foundations comprising long, deep, strip footings are being considered for the project with typical footing dimensions of 14 m long by 3 m wide by 1 m thick. For structural design of the seismic foundations, we recommend using a modulus of subgrade reaction (k_v) of 60 MPa/m. This modulus of subgrade reaction should be doubled along the edges of the footings and quadrupled at the corners. The width of this edge zone can be taken as 0.5 m. The modulus of subgrade reaction is not a soil parameter. It is a response of a soil system to load application and is dependent on several factors including the size of the loaded area, the layering of the subgrade soils, the non-linear shear modulus, the direction of loading, the type of loading, and other factors. To assess the sensitivity of the foundation system to variation in the subgrade stiffness, we recommend that the provided modulus of subgrade reaction value be varied by factors of 0.5 and 5. The modulus of subgrade reaction provided is intended for structural modelling of the foundation only and is not suitable for evaluating settlement.

We can improve our estimate of k_v further using 3D finite element method (FEM) analyses if required. To complete 3D FEM analyses, we will require structural footing dimensions and foundation loads.

8.8 Slab-on-Grade

To provide adequate support for slab-on-grade, any soft materials encountered at the subgrade level should be sub-excavated and replaced with well-compacted fill. The subgrade surface should be compacted to at least 100% SPMDD. Groundwater may be encountered during the sub-excavation and replacement process.

A 150 mm thick layer of compacted granular fill should be provided immediately beneath slab-ongrade areas. The compacted layer of granular material will provide under slab drainage and enable final levelling prior to concrete placement.

Granular material such as minus 19 mm crushed gravel and sand with less than 5% passing the #200 sieve (or less than 0.075 mm) is appropriate as base fill beneath the floor slab. A vapour barrier comprising 6-mil (minimum) polyethylene sheeting should be placed on top of the granular fill. The polyethylene sheets should typically be overlapped a minimum of 300 mm. Depending on the angularity of the granular fill used and level of traffic on the sheeting, a lightweight non-woven geotextile could be placed on top of the granular fill, prior to the polyethylene sheeting, to reduce the risk of punctures. Well-graded materials have the potential to allow moisture in the soil to rise to the vapour barrier which could result in a damp top surface of the concrete slab, especially where the vapour barrier is punctured or compromised during construction if a non-woven layer is not provided. The minus 19 mm crushed gravel and sand should be compacted to at least 100% SPMDD.

8.9 **Perimeter Drains**

Perimeter drains should be installed around the perimeter of the proposed school building at a minimum 300 mm below the finished floor slab level, but not lower than the perimeter foundation elevation. The perimeter drains should be hydraulically connected to the under-slab drainage layer.

The perimeter drains should comprise a minimum 150 mm diameter perforated PVC pipe connected to a suitable point of gravity discharge. The perimeter drains should be surrounded by at least 150 mm of 19 mm clear crushed gravel that is wrapped in non-woven geotextile (filter fabric). Backfill placed above the perimeter drains may consist of structural fill and should be compacted in 300 mm lifts to 100% SPMDD. A low permeability capping fill should be placed above the perimeter drain trench backfill to prevent surface water from infiltrating into the drain. Within 2 m of the building, the yard grade should be sloped to direct surface drainage away from the building.

The purpose of these drainage and backfill provisions is to prevent the buildup of hydrostatic pressures against the floor slab. Any water-proofing and damp-proofing requirements are the responsibility of others.

The contractor should assess the drainage system of CIP retaining wall north of tennis courts during construction. If the CIP wall is to remain in place and the drainage system is not function, then it should be repaired or replaced and connected to the City of North Vancouver (the City) storm system.

8.10 Lateral Earth Pressures

The provided conceptual architectural drawings do not show any retaining walls. We have provided conceptual recommendations below for the project structural engineer if retaining walls are required. If retaining walls are required then Thurber should have the opportunity to update the recommendations provided. CIP walls are typically designed by structural engineers. If other types of retaining walls such as mechanically stabilized earth (MSE), gravity segmental block, anchored shotcrete, or cantilevered walls are required, then Thurber should be contacted to provide a separate retaining wall design memorandum.

Retaining walls should be backfilled using the same materials as recommended for structural fill. The material must be clean (less than 5% passing the #200 sieve) sand and gravel for both drainage considerations and to reduce lateral earth pressures. The backfill should be compacted to 100% SPMDD.

The non-seismic lateral earth pressures can be calculated as an equivalent hydrostatic pressure (triangular distribution) using equivalent fluid densities of 4.9 kN/m³ for yielding walls (active earth pressures). This value assumes a soil unit weight of 20 kN/m³ and an active earth pressure coefficient (K_a) of 0.245. The effect of surcharge pressures (e.g. adjacent shallow foundations and slab loads) can be calculated using the provided K_a. The seismic component of the lateral force on yielding walls can be calculated using 3 kPa per meter times the height of the wall. We recommend applying the seismic component of the lateral earth pressure as an inverted triangular distribution.

For laterally restrained walls (at-rest conditions), static lateral earth pressures can be estimated using a hydrostatic pressure distribution with an equivalent fluid density of 8.8 kN/m³. This value assumes a soil unit weight of 20 kN/m³ and an at-rest earth pressure coefficient (K₀) of 0.44. To account for compaction and surcharge pressures, the static earth pressures should be taken as the larger of the hydrostatic pressure combined with the lateral surcharge pressure or the hydrostatic pressure combined with the lateral compaction pressure. The lateral surcharge pressure can be calculated by multiplying the vertical surcharge pressure by the provided K₀. The compaction pressure can be applied as a 12 kPa uniform pressure distribution. Surcharge and compaction pressures can be applied as rectangular pressure from ground surface to where it intersects the hydrostatic pressure distribution.

The lateral earth pressures provided assume that free draining backfill is used behind the retaining walls and that the retaining wall has a functional drainage system. It is critical that the retaining wall drainage system is maintained and functional. We recommend that the drainage system

should comprise a 150 mm diameter perforated PVC pipe; the pipe should be encased in a 300 mm wide zone of clear crush gravel and wrapped in non-woven geotextile. The drainage system should drain away from the retaining wall and be connected to a suitable point of gravity discharge.

We recommend that the design of the any cast in place permanent retaining walls using active earth pressures incorporate a battered wall face to accommodate wall rotation. The wall batter can be nominally taken to be 1H:20V.

8.11 Pavement Structure

The pavement structure should be supported on a competent subgrade. Competent subgrade could be compacted existing granular fill, firm silt, till-like soil, or compacted structural fill. The subgrade should be proof rolled and visually observed; any soft spots or areas with deleterious material (poor-quality fill, topsoil etc.) should be subexcavated and replaced with select granular subbase compacted to at least 95% modified proctor maximum dry density. The proof-rolling and subgrade preparation should be reviewed by Thurber prior to placement of any subbase. The subgrade preparation and the granular base and sub-base layer should extend a minimum of 1.5 m beyond the perimeter of all paved areas. Pavement subgrade preparation and supply, placement and compaction of the pavement structure should be in accordance with specifications provided in the MMCD.

The City pavement structure, as shown in Table 8.3, is considered appropriate for this site. The local road pavement structure may be used for the proposed parking lot and driveway.

			-		
	MILL AND PAVE RESTORATION	UPPER COURSE ASPHALT	LOWER COURSE ASPHALT	BASE COURSE	SUB-BASE COURSE
ARTERIAL	50mm	50mm UPPER COURSE 1	75mm LOWER COURSE 2	100mm 19mm CRUSHED GRANULAR BASE	200mm 75mm CRUSHED GRANULAR SUB-BASE
COLLECTOR	50mm	40mm UPPER COURSE 1	60mm LOWER COURSE 2	100mm 19mm CRUSHED GRANULAR BASE	200mm 75mm CRUSHED GRANULAR SUB-BASE
LOCAL	50mm	40mm UPPER COURSE 1	40mm LOWER COURSE 2	100mm 19mm CRUSHED GRANULAR BASE	200mm 75mm CRUSHED GRANULAR SUB-BASE
TRUCK ROUTE	50mm	50mm UPPER COURSE 1	75mm LOWER COURSE 2	100mm 19mm CRUSHED GRANULAR BASE	200mm 75mm CRUSHED GRANULAR SUB-BASE
COMMERCIAL LANE	50mm	40mm UPPER COURSE 1	60mm LOWER COURSE 2	100mm 19mm CRUSHED GRANULAR BASE	100mm 75mm CRUSHED GRANULAR SUB-BASE
RESIDENTIAL LANE	50mm	35mm UPPER COURSE 1	40mm LOWER COURSE 2	100mm 19mm CRUSHED GRANULAR BASE	100mm 75mm CRUSHED GRANULAR SUB-BASE

 Table 8.3: City of North Vancouver Road Specifications (from Drawing R2S)

To increase pavement life, construction traffic on paved areas should be avoided by delaying paving operations as late as possible in the construction schedule. Designated access and egress routes should be defined to limit potential pavement damage or failure. These routes will be susceptible to premature pavement damage/failure and may have a reduced service life compared with the remainder of the roadways.

8.12 Underground Services and Utilities

Underground services and utilities that run parallel to a footing should be located above a plane projected down at 1H:1V from the bottom edge of the footing. We note that an angle flatter than 1H:1V is preferable where unsupported cuts are used or where future maintenance of the service will be required.

Installation of buried utilities should conform to the MMCD and the City's specifications.

8.13 Hydraulic Conductivity for Groundwater Infiltration Systems

We understand from NVSD that rain gardens are being considered for this project. These features rely on collection of stormwater and infiltration into site soils.

The near surface soils generally comprise sandy silt, clayey silt, sand and silt, and till-like soil. We have estimated the hydraulic conductivity of these soils based on grain size distribution testing results, typical values for these materials, and our local experience. Table 8.4 summarizes the estimated upper and lower bounds in hydraulic conductivity for the near surface soils.

Soil Type (USCS)	Lower Bound Hydraulic Conductivity (m/s)	Upper Bound Hydraulic Conductivity (m/s)
Sandy silt (ML)	1x10 ⁻⁰⁸	1x10 ⁻⁰⁴
Clayey silt (CL)	1x10 ⁻¹⁰	2x10 ⁻⁰⁷
Sand and silt (SM/ML)	1x10 ⁻⁰⁸	1x10 ⁻⁰⁴
Till-like soil (SM/ML)	1 x10 ⁻⁰⁸	1x10 ⁻⁰⁷

Table 8.4: Estimated Hydraulic Conductivity of Near Surface Soils

The near surface soils are relatively low permeability materials and would not make a suitable base for an infiltration system. If the designer of any proposed infiltration system decides to proceed with rain garden type designs, we recommend that all designs include an overflow that conveys water into the City stormwater collection system.

8.14 Radon

Based on the online British Columbia Center for Disease Control – British Columbia Radon Map, the risk of encountering high levels of radon are considered low at this site. The site is located within a zone corresponding to typically to between 0 to 200 Bq/m³ (Becquerels per cubic metre) and possibly higher in 1% of homes. The building envelope consultant should consider radon potential during design.

8.15 **Temporary Excavations**

All temporary works including excavation, shoring and dewatering should be undertaken in conformance with WorkSafeBC Occupational Health and Safety Regulations (OHSR). However, excavations should be prepared at 1H:1V or flatter in loose to compact granular material and soft to firm fine-grained soils. In order to confirm geotechnical conditions, all excavations must be reviewed by a geotechnical engineer following excavation but prior to worker entry where required by OHSR Part 20.

Extra caution must be used by the contractor when considering any required excavations near existing retaining walls. Detailed information about the existing wall(s) will likely be necessary to assess temporary stability.

Any groundwater encountered during completion of the excavation will need to be controlled by surface ditching, sumps, and pumps. All unsupported slopes should be protected from soil erosion by plastic sheeting or other protective materials.

Excavations more than 1.2 m deep will need to be designed and reviewed by Thurber in accordance with the WorkSafeBC OSHR.

9. ADDITIONAL COMMENTS

Thurber was asked to review the claims of the possible presence of underground streams within the project area. Our review was limited to available information which included review of a 2014 surficial geology map of North Vancouver, and air photos dating back to 1926. Based on this limited review of available information, it appears that underground streams are not present on site.

10. CONSTRUCTION PHASE SERVICES

In accordance with EGBC requirements, Thurber should be contacted to undertake geotechnical field reviews during construction. The purpose of our field reviews would be to assess whether

the soil and groundwater conditions are consistent with our interpretations, and to assess whether the contractor is completing the work in general accordance with our recommendations. Geotechnical field reviews will be necessary for us to provide the Letters of Assurance required under the BCBC. Our construction field review services should consist of the following:

- Review and laboratory testing of proposed fill materials to be used for construction;
- Review of exposed subgrade preparation;
- Review footing excavations and advise of any necessary sub-excavation required;
- Review of contractor submittals; and
- Compaction, visual review and testing of backfill materials

11. CLOSURE

We trust that this information is sufficient for your needs. Should you require clarification of any item or additional information, please contact us at your convenience.

Yours truly, Thurber Engineering Ltd.

Review Engineer

Geotechnical Engineer

Environmental Engineer

Attachments

- Statement of Limitations and Conditions
- Architectural Concept Plan dated July 14, 2023
- Drawing No. 28847-1: Test Hole Location Plan
- Thurber Engineering Ltd. Permit #1001319
- Drawing No. 28847-2: Site Plan with Till-like Soil Elevations Marked

- Symbols and Terms
- Appendix A 2021 Test Hole Logs
- Appendix B 2021 CPT Report
- Appendix C 2023 Test Hole Logs
- Appendix D 2023 Grain Size Distribution Testing Results
- Appendix E Downhole Seismic Testing Results
- Appendix F Environmental Analytical Results
- Appendix G Laboratory Analytical Certificates
- Appendix H NRC 2015 NBC Seismic Hazard Calculator Output

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

CONCEPT PLAN - PROPOSED SITE PLAN CLOVERLEY ELEMENTARY SCHOOL

North Vancouver School District

CONCEPT PLAN - LEVEL 01 FLOOR PLAN CLOVERLEY ELEMENTARY SCHOOL

0 North Vancouver School District

CONCEPT PLAN - LEVEL 02 FLOOR PLAN CLOVERLEY ELEMENTARY SCHOOL

0 North Vancouver School District

PROGRAM	DAS (m²)	ACTUAL (m ²)	COMMENTS				
REPLACEMENT SCHOOL PROGRAM							
ADMIN/ HEALTH	110	106					
GENERAL INSTRUCTION	1680	1572					
PROJECT AREA		378	Area taken from:				
			108 sm from General Instruction 57 sm from Media/ Tech. 54 sm from Inclusive Ed.				
GENERAL STORAGE	80	88					
GYM ACTIVITY	380	381					
GYM ANCILLARY	65	60					
MEDIA/ TECH.	200	143					
MULTIPURPOSE	100	95					
INCLUSIVE ED.	240	186					
MECHANICAL	105	93					
KINDERGARTEN	270	278					
DESIGN SPACE	890	738					
SUBTOTAL:	4120	<u>4119</u>					
NEIGHBOURHOOD LEARNING CENTR	RE (NLC)						
MUSIC		99					
STRONG START		99					
SUPPORT SPACE		53					
DESIGN SPACE		79					
SUBTOTAL:	330	330					
CHILD CARE	390	390					
TOTAL AREA	4840	<u>4839</u>					

TOTAL FLOOR AREA	DAS (m ²)	ACTUAL (m ²)
LEVEL 01 FLOOR AREA		2298
LEVEL 02 FLOOR AREA		1821
TOTAL AREA:	4120	4119
ADDITIONAL PROGRAMS		
NLC	330	330
CHILD CARE	390	390
TOTAL AREA:	4840	4839

CONCEPT PLAN - AREA SUMMARY CLOVERLEY ELEMENTARY SCHOOL 2023.07.14

UNIFIED CLASSIFICATION SYSTEM FOR SOILS (ASTM D2487)

MAJOR DIVISION		SYMB GROUP	OLS GRAPH	TYPICAL DESCRIPTION	LABORATORY CLASSIFICATION CRITERIA	
Û	ц	CLEAN	GW		WELL GRADED GRAVEL and WELL GRADED GRAVEL with SAND.	$C_{U} = \frac{D_{60}}{D_{10}} \ge 4$ $C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1 \text{ to } 3$
S 200 SIEV	TELS COD SIEV TELS AN 50% No. 4 SIEV	GRAVELS (< 5% FINES)	GP		POORLY GRADED GRAVEL and POORLY GRADED GRAVEL with SAND.	NOT MEETING ABOVE REQUIREMENTS
SOILS	GRA MORE TH COARSE F COARSE F	GRAVELS	GM		SILTY GRAVEL, GRAVEL - SAND - SILT MIXTURES.	FINES CLASSIFY AS ML or MH $^{(3)}$
AINED Retaine	RE	(> 12% FINES)	GC		CLAYEY GRAVEL, GRAVEL - SAND - CLAY MIXTURES.	FINES CLASSIFY AS CL or CH $^{(3)}$
SE-GR		CLEAN	SW		WELL GRADED SAND and WELL GRADED SAND with GRAVEL	$C_{U} = \frac{D_{60}}{D_{10}} \ge 6$ $C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1 \text{ to } 3$
SOARS N 50% BY	IDS HAN 50% FRACTION 0. 4 SIEVE	SANDS (< 5% FINES)	SP		POORLY GRADED SAND and POORLY GRADED SAND with GRAVEL.	NOT MEETING ABOVE REQUIREMENTS
ORE THA	C DRE THAI SAN MORE TH MORE TH COARSE F		SM		SILTY SAND, SAND-SILT MIXTURES.	FINES CLASSIFY AS ML or MH $^{(3)}$
(W0	W)	(> 12% FINES)	SC		CLAYEY SAND, SAND-CLAY MIXTURES.	FINES CLASSIFY AS CL or CH $^{(3)}$
EVE)	. TS "A" LINE GIBLE ANIC FENT	W _L < 50%	ML		INORGANIC SILTS, SILTS with SAND and SILTS with GRAVEL and SANDY or GRAVELLY SILTS.	P.I. < 4 or PLOTS BELOW THE "A" LINE
S lo. 200 SIE	WL > 50%		МН		INORGANIC SILTS, SILTS with SAND & SILTS with GRAVEL & SANDY or GRAVELLY SILTS, FINE SANDY or SILTY SOILS.	P.I. PLOTS BELOW THE "A" LINE
D SOIL	S E ON FENT	W _L < 50%	CL		INORGANIC CLAYS of LOW PLASTICITY, GRAVELLY, SANDY, or SILTY CLAYS, LEAN CLAYS.	P.I. > 7 and PLOTS ON OR ABOVE THE "A" LINE
VEIGHT F	CLAYS VE "A" LINE STICITY CH IEGLIGIBLE	W _L near 50%	CL-CH		BORDERLINE INORGANIC CLAYS and SILTY CLAYS with LIQUID LIMITS NEAR 50%.	(only used for visual identification)
NE-GF 50% BY V	ABOV WE-GR	W _L > 50%	СН		INORGANIC CLAYS of HIGH PLASTICITY, FAT CLAYS.	P.I. PLOTS ON OR ABOVE THE "A" LINE
FI RE THAN	FII RE THAN : ANIC TS MC	W _L < 50%	OL		ORGANIC SILTS and ORGANIC SILTY CLAYS of LOW PLASTICITY.	$\frac{W_L \text{ (oven dried)}}{W_L \text{ (not dried)}} < 0.75$
(MOF	ORG SIL CLA	W _L > 50%	ОН		ORGANIC CLAYS OF HIGH PLASTICITY.	$\frac{W_{L} \text{ (oven dried)}}{W_{L} \text{ (not dried)}} < 0.75$
HIGHLY ORGANIC SOILS PT		PT		PEAT and other HIGHLY ORGANIC SOILS.	STRONG COLOR OR ODOR, AND OFTEN FIBROUS TEXTURE.	

NOTES:

- 1. ALL SIEVE SIZES ARE U.S. STANDARD, A.S.T.M. E11-04.
- COARSE GRAINED SOILS WITH 5 TO 12% FINES REQUIRE DUAL SYMBOLS (GW-GM, GW-GC, GP-GM, GP-GC, SW-SM, SW-SC, SP-SM, SP-SC).
- 3. IF FINES CLASSIFY CL-ML USE DUAL SYMBOL (GC-GM or SC-SM).
- 4. WHERE TESTING IS NOT CARRIED OUT, THE IDENTIFICATIONS ARE DETERMINED BY VISUAL-MANUAL PROCEDURES DESCRIBED IN ASTM D2488-06.

SYMBOLS AND TERMS USED ON TEST LOGS

1. PARTICLE SIZE CLASSIFICATION OF MINERAL SOILS

DESCRIPTION		APPARENT PARTICLE SIZE				
BOULDERS		> 200 mm				
COBBLES		75 m	nm to	200	mm	
GRAVEL	coarse fine	19 m 4.75 m	nm to nm to	75 19	mm mm	
SAND	coarse medium fine	2 m 0.475 m 0.075 m	nm to nm to nm to	4.75 2 0.475	mm mm mm	
SILT		Non-plastic particl	es, not v	isible to	the naked eye	
CLAY		Plastic particles	s, not vis	ible to the	e naked eye	

NOTE: Metric Conversion is approximate only

3. TERMS DESCRIBING DENSITY (Cohesionless Soils Only)

DESCRIPTION	STANDARD PENETRATION TEST			
	Number of blov	ws per f	oot (300 n	nm) *
Very Loose	0	to	4	
Loose	4	to	10	
Compact	10	to	30	
Dense	30	to	50	
Very Dense	0	ver 5	0	

* Directly applicable to sands and, with interpretation, to gravels

5. LEGEND FOR TEST HOLE LOGS

2. TERMS DESCRIBING CONSISTENCY (Cohesive Soils Only)

DESCRIPTION	APPROXIMATE UNDRAINED SHEAR STRENGTH
Very Soft	Less than 10 kPa (250 psf)
Soft	10 to 25 kPa (250 - 500 psf)
Firm	25 to 50 kPa (500 - 1000 psf)
Stiff	50 to 100 kPa (1000 - 2000 psf)
Very Stiff	100 to 200 kPa (2000 - 4000 psf)
Hard	Greater than 200 kPa (4000 psf)
Very Soft Soft Firm Stiff Very Stiff Hard	Less than 10 kPa (250 psf) 10 to 25 kPa (250 - 500 psf) 25 to 50 kPa (500 - 1000 psf) 50 to 100 kPa (1000 - 2000 psf) 100 to 200 kPa (2000 - 4000 psf) Greater than 200 kPa (4000 psf)

NOTE: Metric Conversion is approximate only

4. PROPORTION OF MINOR COMPONENTS BY WEIGHT

DESCRIPTION	PERCENT BY WEIGHT											
and	35 to 50 %											
y / ey	20 to 35 %											
some	10 to 20 %											
trace	less than 10 %											
EXAMPLE: Silty SAND, trace of gravel = Sand with 20 to 35% silt and up to 10% gravel, by dry weight. (Percentages of secondary materials are estimates based on visual and tactile assessment of samples).												

(Typical only showing commonly included elements)

	Shee	et 1 of 1											_0G 0	F TE	STI	TEST HOLE NO. TH21-03A								
	LOC	CATION: See DWG. 28847-1 N 5462104, E 496421 (Est.)																CLIE PRC	INT: JECT:	North Var Cloverley		er School Distric entary School	t No. 44	
	top Met Drii Insf	P OF HOLE ELEV: 51.1 m (Est.) THOD: Solid Stem Auger / DCP ILLING CO.: On-Track Drilling Inc. PECTOR: MM								t.) / DC Inc.	PT ,	CPT	THURBER				DATE: April 19, 2021 FILE NO.: 28847 REVIEWED BY: IFA							
	DEPTH (m)		LCPT PENETRATION				SPT PENETRATION (blows/300 mm)					WATER CONTENT (%) O Disturbed Undisturbed	¥ WATER LEVEL SA □ D Plastic Liquid ■ U ↓ ↓ N Limit Limit			SAMPL Distu Undis No R	ES rbed sturbe ecove	ed ery	GRAM ▲Pa △Pa	N SIZE (%) ssing #200 sieve ssing #4 sieve	SOIL HEA CONTRACTOR SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	SIL HEADSPACE READING (ppm)		
	0	1	02	03	04	<u>10 </u>	<u>50 (</u>	<u>50 7</u>	<u>70 8</u>	<u>30 9</u>	0 10	<u>,0 CON</u>	<u>AMENIS</u>				Bi	rown, gi lay and	avelly sorganic	SILT with sor s.	ne sai	nd and traces of	-51	
	-1		C	0										мц СL			So cli ar	oft to fir layey an nd orgai	n, grey d some nics.	-brown, SILT e oxidation ar	with s	some clay to ces of gravel	 50	
	-2	••••		(D	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				SM & CL		<u></u>	M gr cl	lixed zo ravel an layey an	nes of g d soft to d trace	grey-brown, s o firm SILT w s of sand.	silty SA vith so	AND with some me clay to	49	
-	-3					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										I H N	ole ope lo water	n to 2.0 observ	m depth. ed upon com	np l etio	n of drilling.		
5 2024 GLB	- - - 					· · · · · ·	· · · · · ·																- - - - - - - - - - - 47	
BC OPERATION							•																	
2/23- THURBER			· · · · · · · · · · · · · · · · · · ·			· · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·														-46 	
	-6					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																- 45 	
GPJ IHURBER	-7					· · · · · · · · · · · · · · · · · · ·	•																- - 44 - -	
EL EST) 28847	-8	••••					•	•		· · · · · · · · · · · · · · · · · · ·													-43	
HOLE (COORDS+	-9							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·															
LOG OF TEST	10		· · · · · · · · · · · · · · · · · · ·				· • • • • • • • •	· · ·																

	Shee	et 1 of 1 LC											.OG OF TEST HOLE									TEST HOLE NO. TH21-03B			
	LOC	ATI	ON:	:	Se N	ee D 546)WG 210	6. 28 4, E	847 496	-1 6423	(Est	.)							CLIENT: North Vancouver School District PROJECT: Cloverley Elementary School					44	
	top Met Drii Insf	OF HOLE ELEV: 51.1 m (Est THOD: Solid Stem Auger ILLING CO.: On-Track Drilling I PECTOR: MM								t.) / DC Inc.	PT.	/ CPT	THURBER				DATE: FILE N REVIE	IO.: WED I	1	enue					
	DEPTH (m)	DCPT PENETRATION				SPT PENETRATION (blows/300 mm)						WATER VATER LEVEL SAMPLES CONTENT (%) Disturbe O Disturbed Plastic Liquid O Undisturbed Limit Limit W No Rec					3 GRAIN SIZE (%) SOIL HEADSPACE READING (ppm) 2 ed urbed covery △ Passing #200 sieve ☎ GASTECH reading △ Passing #4 sieve ☎ PID reading						ELEVATION		
JRBER_MOM.GDT_11/22/23- THURBER - BC OPERATIONS_2024.GLB	-112	1	0 2	20 3	0 4		50 6	50 7		<u>30 9</u>	0 10	Moved approximatel east from TH	IMENTS y 2 m 21-03A.	CL CL SM			Firr san Sof with org Gre and son End Hol No	n, brown ad and tra ft to firm, n some c anics.	SOI aces of grey-t lay to grey-t lay to due to o 3.0 r oserved	LS DESC clayey SII f gravel ar prown with clayey and elly SAND of firm to sund.	RIPT LT w nd or som d trac	FION with a trace to so ganics. The oxidation SII ces of gravel and some silt to sil it with a trace t	-48 48 48 48 48 48 48 48	³ 0 9 8 7 6 5	
3 OF TEST HOLE (COORDS+EL EST) 28847 GPJ TH																							-42 	3	

She	eet 1 of 1		LOG OF TEST HO	DLE	TEST HOLE NO. TH21-08
LO	CATION:	See DWG. 28847-1 N 5462007, E 496285 (Est	.)	CLIENT: North Vance PROJECT: Cloverley E 440 Hendry	buver School District No. 44 lementary School Avenue
ME DR	P OF HOLE I THOD: ILLING CO.: PECTOR:	ELEV: 53.1 m (Est.) Solid Stem Auger / CPT On-Track Drilling Inc. MM	THURBER	DATE: April 20, 20 FILE NO.: 28847 REVIEWED BY: IFA	21
DEPTH (m)	DCPT PENETR	ATION SPT PENETRATION nm) (blows/300 mm)	WATER CONTENT (%) ■ Dis CONTENT (%) ■ Dis O Disturbed Plastic Liquid ■ Un ● Undisturbed ► 1 ⊠ No Limit Limit	MPLES GRAIN SIZE (%) SC sturbed disturbed ▲ Passing #200 sieve b Recovery ▲ Passing #4 sieve	IL HEADSPACE READING (ppm)
ст. F. Sell.). 28847.647 IHUKBER_MOM.GUI 11/27/28-1НИКВЕК - ВС ОРЕКАНИИХ-2024.64В 1 2 3 4 5 5 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	10 20 3 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0			SOILS DESCRIF ASPHALT (50 mm thick). Loose, brown-black, SAND with asphalt fragments (FILL). Firm, grey-brown with some oxi with a trace of organics. - seams of sand with some grav- depth Compact, grey-brown SILT with trace of clay. - a trace of sand below 2.6 m - sandy and some clay below 3 Dense, grey, gravelly SAND an End of hole due to auger refusa Hole open to 5.2 m depth. No water observed upon compl	PTION a trace of silt and dation, sandy SILT /el below 2.0 m some sand and a .2 m d SILT (TILL-like). 49 48 48 48 48 41. etion of drilling. 47
0 00 IESI HULE (LUUKUS+E					- - - - - - - - - - - - - - - - - - -

CONE PENETRATION TEST REPORT

Prepared for:

Site: 440 Hendry Avenue, North Vancouver, BC Date Drilled: April 19 – 20, 2021

Prepared by:

On Track Drilling 20626 Mufford Crescent Langley, BC V2Y 1N8

www.ontrackdrilling.com

Cone Penetration Testing (CPT) Equipment & Calculated Geotechnical Parameters

On Track Drilling Inc. owns and operates a cone penetration test (CPT) system, supplied by Vertek – A Division of Applied Research and Associates. The Hogentogler electronic system is used with a 10 cm², 10 ton cone that records tip resistance, sleeve friction, pore pressure, inclination and temperature at desired intervals chosen by the operator. The cone penetrometers are designed with equal end area friction sleeves, a net end area ratio 0.8 and 60° apex angle on the tip. The cone consists of two strain gauge transducers, with the cone electronics packaged directly behind the transducers. The cone can be stopped at desired depths and dissipation tests can be completed to determine the groundwater pressures.

All testing is performed in accordance with the current ASTM D5778 standards.

The CPT calculations displayed on the plots are based on the measured tip resistance, sleeve friction and pore water pressure recorded at each specified data point. The recorded tip resistance (qc) is corrected for pore pressure effects (qt) and is used for all the calculations.

The following empirical correlations have been used to calculate the geotechnical parameters used in the CPT plots:

Corrected cone tip resistance:

$$q_t = q_c + (1-a) \cdot u2$$

where: q_c = the recorded tip resistance a = net area ratio for cone (0.8) u2 = the recorded dynamic pore pressure

Soil Behavior Type (Normalized): based on SBTn Robertson (1990) (Linear normalization)

Figure 1: Normalized Soil Behavior Type (SBTn) Classification Chart

Undrained Shear Strength (Su):

$$Su = \frac{(q_t - \sigma_v)}{N_{kt}}$$

where: qt = the corrected tip resistance

 $\sigma_{\underline{v}}$ = the effective overburden stress

N_{kt} = cone constant (user selectable)

Standard Penetration Test Correlation N₁₍₆₀₎:

$$(N_1)_{60} = C_n N_{60}$$

The SPT N₆₀ value corrected for overburden pressure (C_n)

Equivalent SPT N₆₀, (blows/30cm) Lunne et al. (1997) :

$$\frac{\left(\frac{q_t}{p_a}\right)}{N_{60}} = 8.5 \left(1 - \frac{I_c}{4.6}\right)$$

Over Consolidation Ratio (OCR):

$$OCR = k_{OCR} Q_{t1}$$

Only SBTn 1, 2, 3, 4, & 9 (see Lunne et al., 1997)

Shear Wave Velocity (Vs) Testing:

Shear wave velocity measurements can be recorded at desired intervals in conjunction with the cone penetrometer test. The shear waves are typically generated by using a heavy hammer to horizontally strike a beam that is held in place on the ground by a normal force, in this case the outriggers of the drill rig. Two accelerometers mounted directly to the source are used as the contact triggers to initiate the recording of the seismic wave traces. The seismic source is oriented parallel to the axis of the active geophone being used.

The geophones are located 0.2 meters behind the cone tip and the source offset to the cone is recorded for each test.

The velocities of each interval are calculated by choosing a first arrival feature of each recorded wave set and taking the difference in ray path, divided by the time difference between subsequent first arrival times.

All testing is performed in accordance with the current ASTM D7400 standards.

On Track Drilling Inc. 20626 Mufford Crescent Langley, BC, V2Y 1N8 Phone: 604 523 1200 Website: <u>www.ontrackdrilling.com</u>

All calculations have been carried out automatically using the software program CPeT-IT v.3.0.3.2. supplied by Geologismiki. The parameters selected are based on current published CPT correlations and are subject to change to reflect the current state of practice. On Track Drilling does not warrant the correctness or the applicability of any of the calculations carried out by the software and does not assume liability for the use of the data in any design or review.

References:

ASTM D5778-12, 2012, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils", ASTM International, West Conshohocken, PA. DOI: 10.1520/D5778-12.

ASTM D7400/D7400M-19, 2019, "Standard Test Methods for Downhole Seismic Testing", ASTM International, West Conshohocken, PA. DOI: 10.1520/D7400_D7400M-19.

Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice", Blackie Academic and Professional.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.

Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geotechnical Journal, Volume 27: 151-158. DOI: 10.1139/T90-014.

On Track Drilling Inc. 20626 Mufford Crescent Langley, BC, V2Y 1N8 Phone: 604 523 1200 Website: <u>www.ontrackdrilling.com</u>

FILE NO.:

28847

10/27/23- THURBER MOM - BC OPERATIONS.GLB GRAIN

FILE NO.:

28847

DOWNHOLE SEISMIC TEST DATA

Client:	School District 44
Test Hole ID	TH23-01
Site:	Cloverley Elementary School

Г

Job Number:	28847
Date:	12-Oct-23
Source Offset:	0.94
C	Maad Daam

Source: Wood Beam Measured Vertical Travel Time Component Incremental

	Ivieasured	vertical	
	Travel Time	Component	Incremental
Geophone	from Source	of Travel	Shear Wave
Depth (m)	(ms)	Time (ms)	Velocity (m/s)
1.00	8.3	-	-
3.00	14.6	14.0	252
4.00	20.0	19.4	183
5.00	26.5	26.0	151
6.00	29.8	29.5	290
8.00	33.0	32.7	613
9.00	34.4	34.2	676
10.00	37.5	37.3	323
11.00	38.8	38.7	739
12.00	41.9	41.7	325
13.00	44.6	44.5	366
14.00	46.6	46.5	492
15.00	47.8	47.7	812
16.00	50.3	50.2	402
17.00	52.9	52.8	382
18.00	55.1	55.0	466
19.00	57.8	57.7	362
20.00	60.1	60.0	440
22.00	62.7	62.6	764
23.00	65.9	65.8	314
25.00	68.9	68.9	652
26.00	72.1	72.0	317
27.00	74.4	74.4	429

Shear wave travel time measurements by Thurber Engineering Ltd.

VELOCITY PROFILE

Client:	School District 44	Job Number:	28847
Test ID:	TH23-01	Date:	12-Oct-23
Site:	Cloverley Elementary School	Source Offset:	0.94
		Source:	Wood Beam

Shear wave velocity measurements by Thurber Engineering Ltd.

Table 1: Hydrocarbons in Soil Job Number: 28847 Site Address: 440 Hendry Avenue, North Vancouver, BC Client: North Vancouver School District #44

Sample ID						TH21-08-02	TH21-09-02	TH21-11-03	TH21-13-04	TH23-02-02	TH23-03-01
Certificate of Analysis		Soi	Standards (µ	s/g)*		21D2772	21D2772	21D2772	21D2772	23J2230	23J2230
Sample Date	Agricultural	Residentia	Urban Bark	Commorgial		20-Apr-21	20-Apr-21	21-Apr-21	21-Apr-21	6/Oct/23	6/Oct/23
Depth of Sample (m)		Low Density			Industrial (IL)	1.1 - 1.2	0.2 - 0.3	0.8 - 0.9	1.7 - 1.8	0.61-0.91	0.31-0.61
Parameters	(AL)	(RLD)	(, _)	(01)							
Photoionization Detector (ppm)	ns	ns	ns	ns	ns	13.3	0.8	7.1	1.2	1.1	0.6
EPH (C10-C19)	ns	ns	ns	ns	ns	<50	<50	<50	<50	<50	<50
EPH (C19-C32)	ns	ns	ns	ns	ns	<50	<50	<50	<50	85	76
LEPH (C10-C19)	1000	1000	1000	2000	2000	<50	<50	<50	<50	<50	<50
HEPH (C19-C32)	1000	1000	1000	5000	5000	<50	<50	<50	<50	85	76
1-Methylnaphthalene	250	250	500	1000	1000	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
2-Methylnaphthalene	60	60	100	950	950	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Acenaphthene	950	950	2000	15000	15000	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acenaphthylene	ns	ns	ns	ns	ns	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	2.5	2.5	2.5	30	30	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benz(a)anthracene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)pyrene	5	5	10	30	50	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Benzo(b+j)fluoranthene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(g,h,i)perylene	ns	ns	ns	ns	ns	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chrysene	200	200	400	4500	4500	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Dibenz(a,h)anthracene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Fluoranthene	50	50	50	200	200	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluorene	600	600	1000	9500	9500	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Indeno(1,2,3-c,d)pyrene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Naphthalene	0.6	0.6	0.6	20	20	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Phenanthrene	0.1	5	5	50	50	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Pyrene	0.1	10	10	100	100	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050
Quinoline	2.5	2.5	4.5	10	10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Notes: Values in µg/g unless otherwise stated.

Values in µg/g unless otherwise skaw. ns = no standard XXX,XX = Exceeds Applicable AL Soll Standard XXX,XX = Exceeds Applicable RLD Soll Standard XXX,XX = Exceeds Applicable CL Soll Standard XXX,XX = Exceeds Applicable CL Soll Standard XXX,XX = Exceeds Applicable IL Soll Standard (> 3 m bgs)

* Standards provided in Schedule 3.1 of the BC Contaminated Sites Regulation. Site specific factors include intake of contaminated sol, toxicity to soil invertebrates and plants, livestock ingesting sol and fodder, major microbial functional inpaiment, groundwater used for dinking water, livestock watering, irrigation, and groundwater flow to surface water used by aquatic file (treshwater and marine).

PAH = Polycie Aromatic Hydrocarbons EPH₁₀₋₁₉ = LEPH, uncorrected for PAH EPH₁₀₋₂₂ = HEPH, uncorrected for PAH EPH₁₀₋₂₂ = HEPH, uncorrected for PAH ELPH = Light Extractable Petroleum Hydrocarbons, corrected for PAH HEPH = Heavy Extractable Petroleum Hydrocarbons, corrected for PAH

psm_analytical tables_enviro_28847.xlsm

Table 1: Hydrocarbons in Soil Job Number: 28847 Site Address: 440 Hendry Avenue, North Vancouver, BC Client: North Vancouver School District #44

Sample D						TH23-04-03	TH23-B	TH23-05-01	TH23-06-01
Certificate of Analysis		Soi	Standards (µ	g/g)*		23J2230	23J2230	23J2230	23J2230
Sample Date	Agricultural	Residentia	Lirban Park	Commercial		6/Oct/23	6/Oct/23	6/Oct/23	6/Oct/23
Depth of Sample (m)		Low Density	(DI)		Industrial (IL)	1.37-1.52	1.37-1.52	0.15-0.31	0.31-0.46
Parameters	(AL)	(RLD)	(, ,	(01)					
Photoionization Detector (ppm)	ns	ns	ns	ns	ns	0.2	0.2	2.8	2.5
EPH (C10-C19)	ns	ns	ns	ns	ns	<50	<50	<50	<50
EPH (C19-C32)	ns	ns	ns	ns	ns	<50	<50	<50	<50
LEPH (C10-C19)	1000	1000	1000	2000	2000	<50	<50	<50	<50
HEPH (C19-C32)	1000	1000	1000	5000	5000	<50	<50	<50	<50
1-Methylnaphthalene	250	250	500	1000	1000	<0.050	<0.050	<0.050	<0.050
2-Methylnaphthalene	60	60	100	950	950	<0.050	<0.050	<0.050	<0.050
Acenaphthene	950	950	2000	15000	15000	<0.050	<0.050	<0.050	<0.050
Acenaphthylene	ns	ns	ns	ns	ns	<0.050	<0.050	<0.050	<0.050
Anthracene	2.5	2.5	2.5	30	30	<0.050	<0.050	<0.050	<0.050
Benz(a)anthracene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050
Benzo(a)pyrene	5	5	10	30	50	<0.050	<0.050	<0.050	<0.050
Benzo(b+j)fluoranthene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050
Benzo(g,h,i)perylene	ns	ns	ns	ns	ns	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050
Chrysene	200	200	400	4500	4500	<0.050	<0.050	<0.050	<0.050
Dibenz(a,h)anthracene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050
Fluoranthene	50	50	50	200	200	<0.050	<0.050	<0.050	<0.050
Fluorene	600	600	1000	9500	9500	<0.050	<0.050	<0.050	<0.050
Indeno(1,2,3-c,d)pyrene	0.1	1	1	10	10	<0.050	<0.050	<0.050	<0.050
Naphthalene	0.6	0.6	0.6	20	20	< 0.050	<0.050	<0.050	<0.050
Phenanthrene	0.1	5	5	50	50	<0.050	<0.050	<0.050	<0.050
Pyrene	0.1	10	10	100	100	<0.050	<0.050	<0.050	<0.050
Quinoline	2.5	2.5	4.5	10	10	<0.050	<0.050	<0.050	<0.050

Notes: Values in µg/g unless otherwise stated.

Values in µg/g unless otherwise skaw. ns = no standard XXX,XX = Exceeds Applicable AL Soll Standard XXX,XX = Exceeds Applicable RLD Soll Standard XXX,XX = Exceeds Applicable CL Soll Standard XXX,XX = Exceeds Applicable CL Soll Standard XXX,XX = Exceeds Applicable IL Soll Standard (> 3 m bgs)

* Standards provided in Schedule 3.1 of the BC Contaminated Sites Regulation. Site specific factors include intake of contaminated sol, toxicity to soil invertebrates and plants. Investock ingesting sol and fodder, major microbial functional inpaiment, groundwater used for dinking water, [ivestock watering, irrigation, and groundwater flow to surface water used by aquatic file (freshwater and marine).

PAH = Polycie Aromatic Hydrocarbons EPH₁₀₋₁₉ = LEPH, uncorrected for PAH EPH₁₀₋₂₂ = HEPH, uncorrected for PAH EPH₁₀₋₂₂ = HEPH, uncorrected for PAH ELPH = Light Extractable Petroleum Hydrocarbons, corrected for PAH HEPH = Heavy Extractable Petroleum Hydrocarbons, corrected for PAH

psm_analytical tables_enviro_28847.xlsm

Thurber Engineering Ltd.

Page 2 of 6

Table 2: Metals in Soil Job Number: 28847 Site Address: 440 Hendry Avenue, North Vancouver, BC Client: North Vancouver School District #44

Sample ID						TH21-08-02	TH21-09-02	TH21-11-03	TH21-13-04	TH23-02-02	TH23-02-02 Reanalysis	TH23-02-02 Reanalysis
Certificate of Analysis		Soi	Standards (µg	:/g)*		21D2772	21D2772	21D2772	21D2772	23J2230	23J2230	23J2230
Sample Date	Agricultural	Residentia	Urban Bark	Commorcial		20-Apr-21	20-Apr-21	21-Apr-21	21-Apr-21	6/Oct/23	6/Oct/23	6/Oct/23
Depth of Sample (m)		Low Density	(DI)		Industrial (IL)	11 12	0.2 - 0.3	0.8 - 0.9	1.7 - 1.8	0.61-0.91	0.61-0.91	0.61-0.91
Parameters	(AL)	(RLD)	(FL)	(CL)								
pH	ns	ns	ns	ns	ns	5.96	6.18	5.86	6.51	5.98	5.28	5.3
Aluminum (Al)	40000	40000	40000	250000	250000	11900	18800	17700	20000	22800	-	22300
Antimony (Sb)	20	20	20	40	40	0.11	0.18	0.19	0.17	0.45		0.5
Arsenic (As)	10	10	10	10	10	2.39	2.54	2.83	3.21	4.24	-	4.21
Barium (Ba)	350	350	350	350	350	63.1	47.5	38.9	82.7	39.1	-	42.8
Beryllium (Be)	1-85**	1-85**	1-150**	1-350**	1-350**	0.13	0.25	0.22	0.25	0.3	-	0.28
Boron (B)	8500	8500	15000	50000	1000000	<2.0	<2.0	2	<2.0	2.2	-	2.5
Cadmium (Cd)	1-10**	1-20**	1-30**	1-50**	1-50**	<0.040	0.092	0.096	0.099	0.181	0.181	0.152
Chromium (Cr)	60	60	60	60	60	18.3	15.4	14.2	20.4	14.6	-	13.7
Cobalt (Co)	25	25	25	25	25	4.71	5.29	4.81	10	5.62	-	5.4
Copper (Cu)	75-150**	75-150**	75-150**	75-300**	75-300**	13.7	14.4	12.1	32.2	32.3	-	32.3
ron (Fe)	35000	35000	35000	150000	150000	14200	16100	13000	22600	17700	-	16900
Lead (Pb)	120	120	120	120-150**	120-1000**	1.99	5.76	7.63	5.07	26.6	-	29
Lithium (Li)	30	30	65	450	450	7.95	6.72	5.76	7.74	6.38	-	5.68
Manganese (Mn)	2000	2000	2000	2000	2000	166	274	179	483	231	-	233
Mercury (Hg)	0.6	10	25	75	75	<0.040	0.055	0.059	<0.040	0.125	-	0.125
Molybdenum (Mo)	3	15	15	15	15	0.32	0.46	0.51	0.65	0.81	-	0.86
Nickel (Ni)	70-150**	70-150**	70-150**	70-250**	70-250**	8.38	8.39	7.61	13.5	12.3	-	11.7
Selenium (Se)	1	1	1	1	1	<0.20	0.34	0.34	<0.20	0.56	-	0.52
Silver (Ag)	20	20	20	40	40	<0.10	0.12	<0.10	<0.10	0.17	-	0.15
Strontium (Sr)	9500	9500	20000	150000	150000	26.5	25.2	19.8	48.8	17.6	-	17.3
Thallium (TI)	2	9	9	25	25	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10
Tin (Sn)	5	50	50	300	300	<0.20	0.37	0.36	0.34	0.52	-	0.54
Tungsten (W)	15	15	25	200	200	<0.20	<0.20	<0.20	<0.20	0.24	-	0.31
Uranium (U)	15	30	30	30	30	0.31	0.468	0.456	0.673	0.46	-	0.481
Vanadium (V)	100	100	100	100	100	49.1	48.4	49.5	62	48	-	47.2
Zinc (Zn)	150-200**	150-200**	150-200**	150-200**	150-200**	20	31.8	33.9	49.8	47	-	43

Notes: Values in µg/g unless otherwise stated, rs = no standard XXX.XX = Exceeds Applicable AL Sol Standard XXX.XX = Exceeds Applicable RLD Sol Standard XXX.XX = Exceeds Applicable RLS Standard XXX.XX = Exceeds Applicable IL Sol Standard XXX.XX = Exceeds Applicable IL Sol Standard (> 3 m bgs)

* Standards provided in Schedule 3.1 of the BC Contaminated Sites Regulation. Site specific factors include intake of contaminated soil, toxicity to soil invertebrates and plants, livestock ingesting soil and fodder, major microbial functional impairment, groundwater used for dinking water, livestock watering, imgation, and groundwater flow to surface water used by aquatic life (freshwater and marine).

** Standard is pH dependent

psm_analytical tables_enviro_28847.xlsm

Table 2: Metals in Soil Job Number: 28847 Site Address: 440 Hendry Avenue, North Vancouver, BC Client: North Vancouver School District #44

Sample ID						TH23-03-01	TH23-04-03	TH23-04-03 Reanalysis	TH23-04-03 Reanalysis	TH23-B	TH23-B Reanalysis
Certificate of Analysis		Soi	Standards (µg	/g)*		23J2230	23J2230	23J2230	23J2230	Dup. of TH23-04-03	Dup. of TH23-04-03
Sample Date	Agricultural	Residentia	Urban Bark	Commorcial		6/Oct/23	6/Oct/23	6/Oct/23	6/Oct/23	6/Oct/23	6/Oct/23
Depth of Sample (m)		Low Density			Industrial (IL)	0.31-0.61	1.37-1.52	1.37-1.52	1.37-1.52	1.37-1.52	1.37-1.52
Parameters	(AL)	(RLD)	(FL)	(61)							
pH	ns	ns	ns	ns	ns	6.15	7.03	-	-	7.55	-
Aluminum (Al)	40000	40000	40000	250000	250000	23800	38400			33100	-
Antimony (Sb)	20	20	20	40	40	0.74	0.32	-	-	0.35	-
Arsenic (As)	10	10	10	10	10	5.45	7.92	-	-	7.58	-
Barium (Ba)	350	350	350	350	350	56.3	161	-	-	137	-
Beryllium (Be)	1-85**	1-85**	1-150**	1-350**	1-350**	0.33	0.63	-		0.57	-
Boron (B)	8500	8500	15000	50000	1000000	2.2	2.3			<2.0	-
Cadmium (Cd)	1-10**	1-20**	1-30**	1-50**	1-50**	0.228	0.131			0.111	-
Chromium (Cr)	60	60	60	60	60	15.2	31.9	-	-	27.9	-
Cobalt (Co)	25	25	25	25	25	6.93	15.5	-	-	14.7	-
Copper (Cu)	75-150**	75-150**	75-150**	75-300**	75-300**	26.2	60.9	-	-	50.7	-
Iron (Fe)	35000	35000	35000	150000	150000	19500	40000	34600	33100	35600	40800
Lead (Pb)	120	120	120	120-150**	120-1000**	36.6	9.51	-	-	8.2	-
Lithium (Li)	30	30	65	450	450	6.62	12.9	-	-	11	-
Manganese (Mn)	2000	2000	2000	2000	2000	580	744	-	-	628	-
Mercury (Hg)	0.6	10	25	75	75	0.17	<0.040	-	-	<0.040	-
Molybdenum (Mo)	3	15	15	15	15	0.79	0.89	-	-	1.11	-
Nickel (Ni)	70-150**	70-150**	70-150**	70-250**	70-250**	13.6	24.1	-	-	21.6	-
Selenium (Se)	1	1	1	1	1	0.63	<0.20	-	-	<0.20	-
Silver (Ag)	20	20	20	40	40	0.16	<0.10	-	-	<0.10	-
Strontium (Sr)	9500	9500	20000	150000	150000	21.5	59.7	-	-	54.8	-
Thallium (TI)	2	9	9	25	25	<0.10	0.14	-	-	0.13	-
Tin (Sn)	5	50	50	300	300	0.7	0.5	-	-	0.54	-
Tungsten (W)	15	15	25	200	200	0.43	<0.20	-	-	<0.20	-
Uranium (U)	15	30	30	30	30	0.471	0.961	-	-	0.899	-
Vanadium (V)	100	100	100	100	100	52.2	99.3	-	-	93.4	-
Zinc (Zn)	150-200**	150-200**	150-200**	150-200**	150-200**	57.6	86.9	-	-	73.9	-

Notes: Values in µg/g unless otherwise stated, rs = no standard XXX.XX = Exceeds Applicable AL Sol Standard XXX.XX = Exceeds Applicable RLD Sol Standard XXX.XX = Exceeds Applicable RLS Standard XXX.XX = Exceeds Applicable IL Sol Standard XXX.XX = Exceeds Applicable IL Sol Standard (> 3 m bgs)

* Standards provided in Schedule 3.1 of the BC Contaminated Sites Regulation. Site specific factors include intake of contaminated soil, toxicity to soil invertebrates and plants, livestock ingesting soil and fodder, major microbial functional impairment, groundwater used for dinking water, livestock watering, imgation, and groundwater flow to surface water used by aquatic life (freshwater and marine).

** Standard is pH dependent

psm_analytical tables_enviro_28847.xlsm

Table 2: Metals in Soil Job Number: 28847 Site Address: 440 Hendry Avenue, North Vancouver, BC Client: North Vancouver School District #44

Sample ID						TH23-B Reanalysis	TH23-05-01	TH23-06-01
Certificate of Analysis		Soi	Standards (µg	s/g)*		Dup. of TH23-04-03	23J2230	23J2230
Sample Date	A surface la surface a l	Residentia	Link on Donk	O a manufact		6/Oct/23	6/Oct/23	6/Oct/23
Depth of Sample (m)		Low Density	(DL)	Commercia	Industrial (IL)	1.37-1.52	0.15-0.31	0.31-0.46
Parameters	(AL)	(RLD)	(PL)	(CL)				
pH	ns	ns	ns	ns	ns	-	6.01	6.75
Aluminum (Al)	40000	40000	40000	250000	250000	-	22800	15400
Antimony (Sb)	20	20	20	40	40	-	0.1	0.12
Arsenic (As)	10	10	10	10	10	-	2.54	2.54
Barium (Ba)	350	350	350	350	350	-	84.5	44.5
Beryllium (Be)	1-85**	1-85**	1-150**	1-350**	1-350**	-	0.2	0.18
Boron (B)	8500	8500	15000	50000	1000000	-	<2.0	<2.0
Cadmium (Cd)	1-10**	1-20**	1-30**	1-50**	1-50**	-	0.045	0.062
Chromium (Cr)	60	60	60	60	60	-	17.8	16.2
Cobalt (Co)	25	25	25	25	25	-	6.87	5.21
Copper (Cu)	75-150**	75-150**	75-150**	75-300**	75-300**	-	19.9	17.7
ron (Fe)	35000	35000	35000	150000	150000	36900	18900	17000
Lead (Pb)	120	120	120	120-150**	120-1000**	-	3.35	3.85
Lithium (Li)	30	30	65	450	450	-	6.14	5.93
Manganese (Mn)	2000	2000	2000	2000	2000	-	279	208
Mercury (Hg)	0.6	10	25	75	75	-	< 0.040	< 0.040
Molybdenum (Mo)	3	15	15	15	15	-	0.38	0.46
Nickel (Ni)	70-150**	70-150**	70-150**	70-250**	70-250**	-	8.79	9.11
Selenium (Se)	1	1	1	1	1	-	<0.20	<0.20
Silver (Ag)	20	20	20	40	40	-	<0.10	<0.10
Strontium (Sr)	9500	9500	20000	150000	150000	-	75.8	27.9
Thallium (TI)	2	9	9	25	25	-	<0.10	<0.10
Tin (Sn)	5	50	50	300	300	-	0.2	<0.20
Tungsten (W)	15	15	25	200	200	-	<0.20	<0.20
Uranium (U)	15	30	30	30	30	-	0.524	0.423
Vanadium (V)	100	100	100	100	100	-	57.2	54.7
Zinc (Zn)	150-200**	150-200**	150-200**	150-200**	150-200**	-	30.7	28.6

Notes: Values in µg/g unless otherwise stated, rs = no standard XXX.XX = Exceeds Applicable AL Sol Standard XXX.XX = Exceeds Applicable RLD Sol Standard XXX.XX = Exceeds Applicable RLS Standard XXX.XX = Exceeds Applicable IL Sol Standard XXX.XX = Exceeds Applicable IL Sol Standard (> 3 m bgs)

* Standards provided in Schedule 3.1 of the BC Contaminated Sites Regulation. Site specific factors include intake of contaminated soil, toxicity to soil invertebrates and plants, livestock ingesting soil and fodder, major microbial functional impairment, groundwater used for dinking water, livestock watering, imgation, and groundwater flow to surface water used by aquatic life (freshwater and marine).

** Standard is pH dependent

psm_analytical tables_enviro_28847.xlsm

Table 9: Soil QA/QC Job Number: 28847 Site Address: 440 Hendry Avenue, North Vancouver, BC Client: North Vancouver School District #44

Parameters	Detection Limit	TH23-04-03	TH23-B	Mean	RPD
EPH (C10-C19)	50	<50	<50	NC	NC
EPH (C19-C32)	50	<50	<50	NC	NC
LEPH (C10-C19)	50	<50	<50	NC	NC
HEPH (C19-C32)	50	<50	<50	NC	NC
1-Methylnaphthalene	0.05	<0.050	<0.050	NC	NC
2-Methylnaphthalene	0.05	<0.050	<0.050	NC	NC
Acenaphthene	0.05	<0.050	<0.050	NC	NC
Acenaphthylene	0.05	<0.050	<0.050	NC	NC
Anthracene	0.05	<0.050	<0.050	NC	NC
Benz(a)anthracene	0.05	<0.050	<0.050	NC	NC
Benzo(a)pyrene	0.05	<0.050	<0.050	NC	NC
Benzo(b+j)fluoranthene	0.05	<0.050	<0.050	NC	NC
Benzo(g,h,i)perylene	0.05	<0.050	<0.050	NC	NC
Benzo(k)fluoranthene	0.05	<0.050	<0.050	NC	NC
Chrysene	0.05	<0.050	<0.050	NC	NC
Dibenz(a,h)anthracene	0.05	<0.050	<0.050	NC	NC
Fluoranthene	0.05	<0.050	<0.050	NC	NC
Fluorene	0.05	<0.050	<0.050	NC	NC
Indeno(1,2,3-c,d)pyrene	0.05	<0.050	<0.050	NC	NC
Naphthalene	0.05	<0.050	<0.050	NC	NC
Phenanthrene	0.05	<0.050	<0.050	NC	NC
Pyrene	0.05	<0.050	<0.050	NC	NC
Quinoline	0.05	<0.050	<0.050	NC	NC
Parameters	Detection Limit	TH23-04-03	TH23-B	Mean	RPD
Aluminum (Al)	40	38400	33100	35750	14.8%
Antimony (Sb)	0.1	0.32	0.35	0.335	NA
Arsenic (As)	0.3	7.92	7.58	7.75	4.4%
Barium (Ba)	1	161	137	149	16.1%
Beryllium (Be)	0.1	0 <u>.</u> 63	0.57	0.6	10.0%
Boron (B)	2	2.3	<2.0	2.3	NA
Cadmium (Cd)	0.04	0.131	0.111	0.121	NA
Chromium (Cr)	1	31.9	27.9	29.9	13.4%
Cobalt (Co)	0.1	15.5	14.7	15.1	5.3%
Copper (Cu)	0.4	60.9	50.7	55.8	18.3%
Iron (Fe)	20	40000	35600	37800	11.6%
Lead (Pb)	0.2	9.51	8.2	8.855	14.8%
Lithium (Li)	0.1	12.9	11	11.95	15.9%
Manganese (Mn)	0.4	744	628	686	16.9%
Mercury (Hg)	0.04	<0.040	<0.040	NC	NC
Molybdenum (Mo)	0.1	0.89	1.11	1	22.0%
Nickel (Ni)	0.6	24.1	21.6	22.85	10.9%
Selenium (Se)	0.2	<0.20	<0.20	NC	NC
Silver (Ag)	0.1	<0.10	<0.10	NC	NC
Strontium (Sr)	0.2	59 <u>.</u> 7	54.8	57.25	8.6%
Thallium (TI)	0.1	0.14	0.13	0.135	NA
Tin (Sn)	0.2	0.5	0.54	0.52	NA
Tungsten (W)	0.2	<0.20	<0.20	NC	NC
Uranium (U)	0.05	0.961	0.899	0.93	6.7%
Vanadium (V)	1	99.3	93.4	96.35	6.1%
Zinc (Zn)	2	86.9	73.9	80.4	16.2%

Mean and RPD not calculated when results were below detection limits. **bold** = Exceeds Acceptable Limit (RPD of 60%) QA/QC = Quality Assurance / Quality Control RPD = Relative Percent Difference NA = Not applicable NC = Not calculated

CERTIFICATE OF ANALYSIS

REPORTED TO	Thurber Engineering Ltd. (Vancouver) 900 - 1281 West Georgia Street Vancouver, BC V6E 3J7		
ATTENTION		WORK ORDER	21D2772
PO NUMBER PROJECT PROJECT INFO	28847 28847	RECEIVED / TEMP REPORTED COC NUMBER	2021-04-27 11:30 / 4°C 2021-05-05 13:14 B102820

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

We've Got Chemistry

It's simple. We figure the more you enjoy working with fun and our engaged team members; the more likely you are to give us continued opportunities to support you.

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technica knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

Work Order Comments:

This is a revised report; please refer to Appendix 3 for details.

If you have any questions or concerns, please contact me at

Authorized By:

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7 | #108 4475 Wayburne Drive Burnaby, BC V5G 4X4

REPORTED TO PROJECT	Thurber Engineering Lt 28847	d. (Vancouver)		WORK ORDER REPORTED	21D2772 2021-05-0	5 13:14
Analyte		Result	RL	Units	Analyzed	Qualifier
TH21-13-04 (21D27	72-12) Matrix: Soil S	ampled: 2021-04-21				
BCMOE Aggregate H	ydrocarbons					
EPHs10-19		< 50	50	mg/kg dry	2021-04-29	
EPHs19-32		< 50	50	mg/kg dry	2021-04-29	
LEPHs		< 50	50	mg/kg dry	N/A	
HEPHs		< 50	50	mg/kg dry	N/A	
Surrogate: 2-Methyl	nonane (EPH/F2-4)	104	70-125	%	2021-04-29	
General Parameters						
Moisture		20.9	1.0	% wet	2021-04-30	
pH (1:2 H2O Solutio	n)	6.51	0.10	pH units	2021-05-02	HT1
Polycyclic Aromatic	Hydrocarbons (PAH)					
1-Methylnaphthalen	e	< 0.050	0.050	mg/kg dry	2021-04-29	
2-Methvinaphthalen	3	< 0.050	0.050	ma/ka drv	2021-04-29	
Acenaphthene		< 0.050	0.050	mg/kg dry	2021-04-29	
Acenaphthylene		< 0.050	0.050	mg/kg dry	2021-04-29	
Anthracene		< 0.050	0.050	mg/kg dry	2021-04-29	
Benz(a)anthracene		< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(a)pyrene		< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(b+j)fluoranthe	ene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(g,h,i)perylene	9	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(k)fluoranthen	е	< 0.050	0.050	ma/ka drv	2021-04-29	
Chrysene		< 0.050	0.050	mg/kg dry	2021-04-29	
Dibenz(a,h)anthrace	ne	< 0.050	0.050	ma/ka drv	2021-04-29	
Fluoranthene		< 0.050	0.050	ma/ka drv	2021-04-29	
Fluorene		< 0.050	0.050	ma/ka drv	2021-04-29	
Indeno(1,2,3-cd)pyre	ene	< 0.050	0.050	ma/ka drv	2021-04-29	
Naphthalene		< 0.050	0.050	ma/ka drv	2021-04-29	
Phenanthrene		< 0.050	0.050	ma/ka drv	2021-04-29	
Pvrene		< 0.050	0.050	ma/ka drv	2021-04-29	
Quinoline		< 0.050	0.050	ma/ka drv	2021-04-29	
Surrogate: Acenanh	thene-d10	82	50-122	%	2021-04-29	
Surrogate: Chrvsen	e-d12	94	50-140	%	2021-04-29	
Surrogate: Nanhthai	ene-d8	82	50-140	%	2021-04-29	
Surrogate: Pervlene	-d12	86	50-140	%	2021-04-29	
Surrogate: Phenantl	nrene-d10	86	55-119	%	2021-04-29	
Strong Acid Leachab	le Metals					

Aluminum	20000	40 mg/kg dry	2021-05-01
Antimony	0.17	0.10 mg/kg dry	2021-05-01
Arsenic	3.21	0.30 mg/kg dry	2021-05-01
Barium	82.7	1.0 mg/kg dry	2021-05-01
Beryllium	0.25	0.10 mg/kg dry	2021-05-01
Boron	< 2.0	2.0 mg/kg dry	2021-05-01
Cadmium	0.099	0.040 mg/kg dry	2021-05-01

REPORTED TO	Thurber Engineering Ltd.	(Vancouver)
PROJECT	28847	

WORK ORDER 21 REPORTED 20

21D2772 2021-05-05 13:14

Analyte	Result	RL Units	Analyzed	Qualifier

TH21-13-04 (21D2772-12) | Matrix: Soil | Sampled: 2021-04-21, Continued

Strong Acid Leachable Metals, Continued

Chromium	20.4	1.0 mg/kg dry 2021-05-01
Cobalt	10.0	0.10 mg/kg dry 2021-05-01
Copper	32.2	0.40 mg/kg dry 2021-05-01
Iron	22600	20 mg/kg dry 2021-05-01
Lead	5.07	0.20 mg/kg dry 2021-05-01
Lithium	7.74	0.10 mg/kg dry 2021-05-01
Manganese	483	0.40 mg/kg dry 2021-05-01
Mercury	< 0.040	0.040 mg/kg dry 2021-05-01
Molybdenum	0.65	0.10 mg/kg dry 2021-05-01
Nickel	13.5	0.60 mg/kg dry 2021-05-01
Selenium	< 0.20	0.20 mg/kg dry 2021-05-01
Silver	< 0.10	0.10 mg/kg dry 2021-05-01
Strontium	48.8	0.20 mg/kg dry 2021-05-01
Thallium	< 0.10	0.10 mg/kg dry 2021-05-01
Tin	0.34	0.20 mg/kg dry 2021-05-01
Tungsten	< 0.20	0.20 mg/kg dry 2021-05-01
Uranium	0.673	0.050 mg/kg dry 2021-05-01
Vanadium	62.0	1.0 mg/kg dry 2021-05-01
Zinc	49.8	2.0 mg/kg dry 2021-05-01

TH21-11-03 (21D2772-20) | Matrix: Soil | Sampled: 2021-04-21

BCMOE Aggregate Hydrocarbons

EPHs10-19	< 50	50	mg/kg dry	2021-04-29	
EPHs19-32	< 50	50	mg/kg dry	2021-04-29	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	< 50	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	107	70-125	%	2021-04-29	
General Parameters					
Moisture	19.1	1.0	% wet	2021-04-30	
pH (1:2 H2O Solution)	5.86	0.10	pH units	2021-05-02	HT1
Polycyclic Aromatic Hydrocarbons (PAH)					
1-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2021-04-29	
2-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2021-04-29	
Acenaphthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2021-04-29	
Anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2021-04-29	

Vanadium

Zinc

REPORTED TO	Thurber Engineering Ltd.	(Vancouver)
PROJECT	28847	

WORK ORDER 21 REPORTED 20

21D2772 2021-05-05 13:14

Analyte	Result	RL	Units	Analyzed	Qualifier
TH21-11-03 (21D2772-20) Matrix: So	il Sampled: 2021-04-21, Continu	ed			
Polycyclic Aromatic Hydrocarbons (PAH), Continued				
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Chrysene	< 0.050	0.050	mg/kg dry	2021-04-29	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Fluoranthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Fluorene	< 0.050	0.050	mg/kg dry	2021-04-29	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Naphthalene	< 0.050	0.050	mg/kg dry	2021-04-29	
Phenanthrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Quinoline	< 0.050	0.050	mg/kg dry	2021-04-29	
Surrogate: Acenaphthene-d10	83	50-122	%	2021-04-29	
Surrogate: Chrysene-d12	89	50-140	%	2021-04-29	
Surrogate: Naphthalene-d8	83	50-140	%	2021-04-29	
Surrogate: Perylene-d12	82	50-140	%	2021-04-29	
Surrogate: Phenanthrene-d10	87	55-119	%	2021-04-29	
Strong Acid Leachable Metals					
Aluminum	17700	40	mg/kg dry	2021-05-01	
Antimony	0.19	0.10	mg/kg dry	2021-05-01	
Arsenic	2.83	0.30	mg/kg dry	2021-05-01	
Barium	38.9	1.0	mg/kg dry	2021-05-01	
Beryllium	0.22	0.10	mg/kg dry	2021-05-01	
Boron	2.0	2.0	mg/kg dry	2021-05-01	
Cadmium	0.096	0.040	mg/kg dry	2021-05-01	
Chromium	14.2	1.0	mg/kg dry	2021-05-01	
Cobalt	4.81	0.10	mg/kg dry	2021-05-01	
Copper	12.1	0.40	mg/kg dry	2021-05-01	
Iron	13000	20	mg/kg dry	2021-05-01	
Lead	7.63	0.20	mg/kg dry	2021-05-01	
Lithium	5.76	0.10	mg/kg dry	2021-05-01	
Manganese	179	0.40	mg/kg dry	2021-05-01	
Mercury	0.059	0.040	mg/kg dry	2021-05-01	
Molybdenum	0.51	0.10	mg/kg dry	2021-05-01	
Nickel	7.61	0.60	mg/kg dry	2021-05-01	
Selenium	0.34	0.20	mg/kg dry	2021-05-01	
Silver	< 0.10	0.10	mg/kg dry	2021-05-01	
Strontium	19.8	0.20	mg/kg dry	2021-05-01	
Thallium	< 0.10	0.10	mg/kg dry	2021-05-01	
Tin	0.36	0.20	mg/kg dry	2021-05-01	
Tungsten	< 0.20	0.20	mg/kg dry	2021-05-01	
Uranium	0.456	0.050	mg/kg dry	2021-05-01	

49.5

33.9

1.0 mg/kg dry

2.0 mg/kg dry

2021-05-01

2021-05-01

REPORTED TO Thurber Engined PROJECT 28847	ering Ltd. (Vancouver)		WORK ORDER REPORTED	21D2772 2021-05-0	5 13:14
Analyte	Result	RL	Units	Analyzed	Qualifier
TH21-08-02 (21D2772-31) Matrix:	Soil Sampled: 2021-04-20				
BCMOE Aggregate Hydrocarbons					
EPHs10-19	< 50	50	mg/kg dry	2021-04-29	
EPHs19-32	< 50	50	mg/kg dry	2021-04-29	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	< 50	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4	4) 103	70-125	%	2021-04-29	
General Parameters					
Moisture	16.1	1.0	% wet	2021-04-30	
pH (1:2 H2O Solution)	5.96	0.10	pH units	2021-05-02	HT1
Polycyclic Aromatic Hydrocarbons (P/	а <i>н</i>)		F		
1-Methylnaphthalene	< 0.050	0.050	ma/ka drv	2021-04-29	
2-Methylnaphthalene	< 0.050	0.050	ma/ka dry	2021-04-29	
Acenaphthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Acenaphthylene	< 0.050	0.050	ma/ka dry	2021-04-29	
Anthracene	< 0.050	0.050	ma/ka dry	2021-04-29	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(b+i)fluoranthene	< 0.050	0.050	ma/ka drv	2021-04-29	
Benzo(a,h,i)pervlene	< 0.050	0.050	ma/ka drv	2021-04-29	
Benzo(k)fluoranthene	< 0.050	0.050	ma/ka drv	2021-04-29	
Chrysene	< 0.050	0.050	ma/ka drv	2021-04-29	
Dibenz(a,h)anthracene	< 0.050	0.050	ma/ka drv	2021-04-29	
Fluoranthene	< 0.050	0.050	ma/ka dry	2021-04-29	
Fluorene	< 0.050	0.050	mg/kg dry	2021-04-29	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Naphthalene	< 0.050	0.050	ma/ka dry	2021-04-29	
Phenanthrene	< 0.050	0.050	ma/ka dry	2021-04-29	
Pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Quinoline	< 0.050	0.050	mg/kg dry	2021-04-29	
Surrogate: Acenaphthene-d10	81	50-122	%	2021-04-29	
Surrogate: Chrysene-d12	88	50-140	%	2021-04-29	
Surrogate: Naphthalene-d8	84	50-140	%	2021-04-29	
Surrogate: Pervlene-d12	85	50-140	%	2021-04-29	
Surrogate: Phenanthrene-d10	85	55-119	%	2021-04-29	
Strong Acid Leachable Metals					

Aluminum	11900	40 mg/kg dry	2021-05-01
Antimony	0.11	0.10 mg/kg dry	2021-05-01
Arsenic	2.39	0.30 mg/kg dry	2021-05-01
Barium	63.1	1.0 mg/kg dry	2021-05-01
Beryllium	0.13	0.10 mg/kg dry	2021-05-01
Boron	< 2.0	2.0 mg/kg dry	2021-05-01
Cadmium	< 0.040	0.040 mg/kg dry	2021-05-01

REPORTED TO	Thurber Engineering Ltd.	(Vancouver)
PROJECT	28847	

WORK ORDER 21 REPORTED 20

21D2772 2021-05-05 13:14

Analyte	Result	RL Units	Analyzed	Qualifier
TH21-08-02 (21D2772-31) Matrix: Soil Sampled: 2021-04-20, Continued				

Strong Acid Leachable Metals, Continued

Chromium	18.3	1.0 mg/kg dry 2021-05-01
Cobalt	4.71	0.10 mg/kg dry 2021-05-01
Copper	13.7	0.40 mg/kg dry 2021-05-01
Iron	14200	20 mg/kg dry 2021-05-01
Lead	1.99	0.20 mg/kg dry 2021-05-01
Lithium	7.95	0.10 mg/kg dry 2021-05-01
Manganese	166	0.40 mg/kg dry 2021-05-01
Mercury	< 0.040	0.040 mg/kg dry 2021-05-01
Molybdenum	0.32	0.10 mg/kg dry 2021-05-01
Nickel	8.38	0.60 mg/kg dry 2021-05-01
Selenium	< 0.20	0.20 mg/kg dry 2021-05-01
Silver	< 0.10	0.10 mg/kg dry 2021-05-01
Strontium	26.5	0.20 mg/kg dry 2021-05-01
Thallium	< 0.10	0.10 mg/kg dry 2021-05-01
Tin	< 0.20	0.20 mg/kg dry 2021-05-01
Tungsten	< 0.20	0.20 mg/kg dry 2021-05-01
Uranium	0.310	0.050 mg/kg dry 2021-05-01
Vanadium	49.1	1.0 mg/kg dry 2021-05-01
Zinc	20.0	2.0 mg/kg dry 2021-05-01

TH21-09-02 (21D2772-36) | Matrix: Soil | Sampled: 2021-04-20

BCMOE Aggregate Hydrocarbons

EPHs10-19	< 50	50	mg/kg dry	2021-04-29	
EPHs19-32	< 50	50	mg/kg dry	2021-04-29	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	< 50	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	103	70-125	%	2021-04-29	
General Parameters					
Moisture	21.6	1.0	% wet	2021-04-30	
pH (1:2 H2O Solution)	6.18	0.10	pH units	2021-05-02	HT1
Polycyclic Aromatic Hydrocarbons (PAH)					
1-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2021-04-29	
2-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2021-04-29	
Acenaphthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2021-04-29	
Anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2021-04-29	

Vanadium

Zinc

REPORTED TO	Thurber Engineering Ltd.	(Vancouver)		
PROJECT	28847			

WORK ORDER 21 REPORTED 20

21D2772 2021-05-05 13:14

Analyte	Result	RL	Units	Analyzed	Qualifier
TH21-09-02 (21D2772-36) Matrix: So	il Sampled: 2021-04-20, Contir	nued			
Polycyclic Aromatic Hydrocarbons (PAH)	, Continued				
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Chrysene	< 0.050	0.050	mg/kg dry	2021-04-29	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2021-04-29	
Fluoranthene	< 0.050	0.050	mg/kg dry	2021-04-29	
Fluorene	< 0.050	0.050	mg/kg dry	2021-04-29	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Naphthalene	< 0.050	0.050	mg/kg dry	2021-04-29	
Phenanthrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Pyrene	< 0.050	0.050	mg/kg dry	2021-04-29	
Quinoline	< 0.050	0.050	mg/kg dry	2021-04-29	
Surrogate: Acenaphthene-d10	79	50-122	%	2021-04-29	
Surrogate: Chrysene-d12	87	50-140	%	2021-04-29	
Surrogate: Naphthalene-d8	79	50-140	%	2021-04-29	
Surrogate: Perylene-d12	79	50-140	%	2021-04-29	
Surrogate: Phenanthrene-d10	84	55-119	%	2021-04-29	
Strong Acid Leachable Metals					
Aluminum	18800	40	mg/kg dry	2021-05-01	
Antimony	0.18	0.10	mg/kg dry	2021-05-01	
Arsenic	2.54	0.30	mg/kg dry	2021-05-01	
Barium	47.5	1.0	mg/kg dry	2021-05-01	
Beryllium	0.25	0.10	mg/kg dry	2021-05-01	
Boron	< 2.0	2.0	mg/kg dry	2021-05-01	
Cadmium	0.092	0.040	mg/kg dry	2021-05-01	
Chromium	15.4	1.0	mg/kg dry	2021-05-01	
Cobalt	5.29	0.10	mg/kg dry	2021-05-01	
Copper	14.4	0.40	mg/kg dry	2021-05-01	
Iron	16100	20	mg/kg dry	2021-05-01	
Lead	5.76	0.20	mg/kg dry	2021-05-01	
Lithium	6.72	0.10	mg/kg dry	2021-05-01	
Manganese	274	0.40	mg/kg dry	2021-05-01	
Mercury	0.055	0.040	mg/kg dry	2021-05-01	
Molybdenum	0.46	0.10	mg/kg dry	2021-05-01	
Nickel	8.39	0.60	mg/kg dry	2021-05-01	
Selenium	0.34	0.20	mg/kg dry	2021-05-01	
Silver	0.12	0.10	mg/kg dry	2021-05-01	
Strontium	25.2	0.20	mg/kg dry	2021-05-01	
Thallium	< 0.10	0.10	mg/kg dry	2021-05-01	
Tin	0.37	0.20	mg/kg dry	2021-05-01	
Tungsten	< 0.20	0.20	mg/kg dry	2021-05-01	
Uranium	0.468	0.050	mg/kg dry	2021-05-01	

48.4

31.8

2021-05-01

2021-05-01

1.0 mg/kg dry

2.0 mg/kg dry

REPORTED TO	Thurber Engineering Ltd.	(Vancouver)
PROJECT	28847	

WORK ORDER REPORTED 21D2772 2021-05-05 13:14

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TOThurber Engineering Ltd. (Vancouver)**PROJECT**28847

 WORK ORDER
 21D2772

 REPORTED
 2021-05-0

21D2772 2021-05-05 13:14

Analysis Description	Method Ref.	Technique	Accredited	Location
EPH in Soil	EPA 3570* / BCMOE EPHs*	Shaker Extraction (Hexane-Acetone 1:1) / Gas Chromatography (GC-FID)	~	Richmond
HEPHs in Soil	BCMOE LEPH/HEPH	Calculation		N/A
LEPHs in Soil	BCMOE LEPH/HEPH	Calculation		N/A
Moisture in Soil	ASTM D2974-87*	Gravimetry (Dried at 105C)		N/A
pH in Soil	Carter 16.2 / SM 4500-H+ B (2017)	1:2 Soil/Water Slurry / Electrometry	\checkmark	Richmond
Polycyclic Aromatic Hydrocarbons in Soil	EPA 3570* / EPA 8270D	Shaker Extraction (Hexane-Acetone 1:1) / GC-MSD (SIN	1) ✓	Richmond
SALM in Soil	BCMOE SALM V.2 / EPA 6020B	HNO3+HCI Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	√	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL	Reporting Limit (default)
% wet	Percent (as received basis)
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
mg/kg dry	Milligrams per kilogram (dry weight basis)
pH units	pH < 7 = acidic, ph > 7 = basic
ASTM	ASTM International Test Methods
BCMOE	British Columbia Environmental Laboratory Manual, British Columbia Ministry of Environment
EPA	United States Environmental Protection Agency Test Methods
SM	Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Thurber Engineering Ltd. (Vancouver)	WORK ORDER	21D2772
PROJECT	28847	REPORTED	2021-05-05 13:14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliguot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike	Source	% REC	REC	% RPD RPD	Qualifier
			Leve	Result	, <u>-</u> -	Limit	Limit	Qualitie

BCMOE Aggregate Hydrocarbons, Batch B1D2652

Blank (B1D2652-BLK1)			Prepared: 20	21-04-28, Analyzeo	d: 2021-04-28	
EPHs10-19	< 50	50 mg/kg wet				
EPHs19-32	< 50	50 mg/kg wet				
Surrogate: 2-Methylnonane (EPH/F2-4)	15.7	mg/kg wet	16.5	95	70-125	
LCS (B1D2652-BS2)			Prepared: 20	21-04-28, Analyzed	d: 2021-04-28	
EPHs10-19	2300	50 mg/kg wet	2780	82	70-110	
EPHs19-32	3200	50 mg/kg wet	3990	81	70-110	
Surrogate: 2-Methylnonane (EPH/F2-4)	19.2	mg/kg wet	16.0	120	70-125	
Reference (B1D2652-SRM1)			Prepared: 20	21-04-28, Analyzed	d: 2021-04-29	
EPHs10-19	2800	75 mg/kg wet	3020	93	65-130	
EPHs19-32	3900	75 mg/kg wet	4330	91	65-130	
Surrogate: 2-Methylnonane (EPH/F2-4)	25.0	mg/kg wet	25.0	100	70-125	

Polycyclic Aromatic Hydrocarbons (PAH), Batch B1D2652

Blank (B1D2652-BLK1)		Prepared: 2021-04-28, Analyzed: 2021-04-29
1-Methylnaphthalene	< 0.050	0.050 mg/kg wet
2-Methylnaphthalene	< 0.050	0.050 mg/kg wet
Acenaphthene	< 0.050	0.050 mg/kg wet
Acenaphthylene	< 0.050	0.050 mg/kg wet
Anthracene	< 0.050	0.050 mg/kg wet
Benz(a)anthracene	< 0.050	0.050 mg/kg wet
Benzo(a)pyrene	< 0.050	0.050 mg/kg wet
Benzo(b+j)fluoranthene	< 0.050	0.050 mg/kg wet
Benzo(g,h,i)perylene	< 0.050	0.050 mg/kg wet
Benzo(k)fluoranthene	< 0.050	0.050 mg/kg wet
Chrysene	< 0.050	0.050 mg/kg wet
Dibenz(a,h)anthracene	< 0.050	0.050 mg/kg wet
Fluoranthene	< 0.050	0.050 mg/kg wet
Fluorene	< 0.050	0.050 mg/kg wet
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 mg/kg wet
Naphthalene	< 0.050	0.050 mg/kg wet
Phenanthrene	< 0.050	0.050 mg/kg wet
Pyrene	< 0.050	0.050 mg/kg wet
Quinoline	< 0.050	0.050 mg/kg wet

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO PROJECT	Thurber Engineering L 28847	td. (Vancouver))			WORK REPOR	ORDER TED	21D2 2021	2772 -05-05	13:14
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Polycyclic Aromati	c Hydrocarbons (PAH), B	atch B1D2652, C	ontinued							
Blank (B1D2652-B	LK1), Continued			Prepared	: 2021-04-2	8, Analyze	d: 2021-0	4-29		
Surrogate: Acenapht	hene-d10	1.30	mg/kg wet	1.66		79	50-122			
Surrogate: Chrysene	-d12	1.36	mg/kg wet	1.66		82	50-140			
Surrogate: Naphthale	ene-d8	1.30	mg/kg wet	1.66		78	50-140			
Surrogate: Perylene-	d12	1.31	mg/kg wet	1.66		79	50-140			
Surrogate: Phenanth	rene-d10	1.35	mg/kg wet	1.66		81	55-119			
LCS (B1D2652-BS	1)			Prepared	: 2021-04-2	8, Analyze	d: 2021 - 0	4-29		
1-Methylnaphthalene		1.26	0.050 mg/kg wet	1.56		81	67-120			
2-Methylnaphthalene		1.21	0.050 mg/kg wet	1.56		78	71-122			
Acenaphthene		1.19	0.050 mg/kg wet	1.56		76	63-119			
Acenaphthylene		1.23	0.050 mg/kg wet	1.56		79	68-126			

		5 5			
Acenaphthylene	1.23	0.050 mg/kg wet	1.56	79	68-126
Anthracene	1.25	0.050 mg/kg wet	1.56	80	69-117
Benz(a)anthracene	1.26	0.050 mg/kg wet	1.56	81	56-127
Benzo(a)pyrene	1.26	0.050 mg/kg wet	1.56	81	63-116
Benzo(b+j)fluoranthene	2.59	0.050 mg/kg wet	3.11	83	71-122
Benzo(g,h,i)perylene	1.01	0.050 mg/kg wet	1.56	65	56-133
Benzo(k)fluoranthene	1.28	0.050 mg/kg wet	1.56	82	62-131
Chrysene	1.29	0.050 mg/kg wet	1.56	83	66-132
Dibenz(a,h)anthracene	1.08	0.050 mg/kg wet	1.56	69	56-119
Fluoranthene	1.28	0.050 mg/kg wet	1.56	82	72-119
Fluorene	1.19	0.050 mg/kg wet	1.56	76	62-115
Indeno(1,2,3-cd)pyrene	0.982	0.050 mg/kg wet	1.56	63	59-118
Naphthalene	1.22	0.050 mg/kg wet	1.56	78	70-136
Phenanthrene	1.27	0.050 mg/kg wet	1.56	82	61-124
Pyrene	1.36	0.050 mg/kg wet	1.56	87	70-119
Quinoline	1.41	0.050 mg/kg wet	1.56	91	50-125
Surrogate: Acenaphthene-d10	1.21	mg/kg wet	1.56	77	50-122
Surrogate: Chrysene-d12	1.22	mg/kg wet	1.56	78	50-140
Surrogate: Naphthalene-d8	1.20	mg/kg wet	1.56	77	50-140
Surrogate: Perylene-d12	1.23	mg/kg wet	1.56	79	50-140
Surrogate: Phenanthrene-d10	1.25	ma/ka wet	1.56	80	55-119

Strong Acid Leachable Metals, Batch B1D3011

Blank (B1D3011-BLK1)

Blank (B1D3011-BLK1)			Prepared: 2021-04-30, Analyzed: 2021-05-01
Aluminum	< 40	40 mg/kg dry	
Antimony	< 0.10	0.10 mg/kg dry	
Arsenic	< 0.30	0.30 mg/kg dry	
Barium	< 1.0	1.0 mg/kg dry	
Beryllium	< 0.10	0.10 mg/kg dry	
Boron	< 2.0	2.0 mg/kg dry	
Cadmium	< 0.040	0.040 mg/kg dry	
Chromium	< 1.0	1.0 mg/kg dry	
Cobalt	< 0.10	0.10 mg/kg dry	
Copper	< 0.40	0.40 mg/kg dry	
Iron	< 20	20 mg/kg dry	
Lead	< 0.20	0.20 mg/kg dry	
Lithium	< 0.10	0.10 mg/kg dry	
Manganese	< 0.40	0.40 mg/kg dry	
Mercury	< 0.040	0.040 mg/kg dry	
Molybdenum	< 0.10	0.10 mg/kg dry	
Nickel	< 0.60	0.60 mg/kg dry	
Selenium	< 0.20	0.20 mg/kg dry	
Silver	< 0.10	0.10 mg/kg dry	
Strontium	< 0.20	0.20 mg/kg dry	
Thallium	< 0.10	0.10 mg/kg dry	

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO PROJECT	Thurber Engineerir 28847	ng Ltd. (Vancouv	er)			WORK REPOR	order Ted	21D2 2021	2772 -05-05	13:14
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Strong Acid Leach	able Metals, Batch B1	D3011, Continued								

on ong Acia Ecacitable Metals, Batch Bibborn, Con

Blank (B1D3011-BLK1), Continued			Prepared:	2021-04-30, Analyzed: 2021-05-01
Tin	< 0.20	0.20 mg/kg dry		
Tungsten	< 0.20	0.20 mg/kg dry		
Uranium	< 0.050	0.050 mg/kg dry		
Vanadium	< 1.0	1.0 mg/kg dry		
Zinc	< 2.0	2.0 mg/kg dry		
LCS (B1D3011-BS1)			Prepared:	2021-04-30, Analyzed: 2021-05-01
Antimony	2.04	0.10 mg/kg dry	2.00	102 80-120
Arsenic	1.86	0.06 mg/kg dry	2.00	93 80-120
Barium	2.1	1.0 mg/kg dry	1.98	108 80-120
Beryllium	1.98	0.10 mg/kg dry	1.98	100 80-120
Boron	2.2	0.4 mg/kg dry	2.00	109 80-120
Cadmium	1.97	0.040 mg/kg dry	1.99	99 80-120
Chromium	1.9	1.0 mg/kg dry	1.98	98 80-120
Cobalt	1.98	0.10 mg/kg dry	1.99	100 80-120
Copper	1.99	0.40 mg/kg dry	2.00	100 80-120
Iron	189	4 mg/kg dry	202	94 80-120
Lead	2.00	0.20 mg/kg dry	1.99	101 80-120
Lithium	2.07	0.02 mg/kg dry	2.00	104 80-120
Manganese	1.96	0.08 mg/kg dry	1.99	99 80-120
Mercury	0.094	0.040 mg/kg dry	0.100	94 80-120
Molybdenum	1.85	0.10 mg/kg dry	2.00	93 80-120
Nickel	2.03	0.60 mg/kg dry	2.00	101 80-120
Selenium	1.95	0.20 mg/kg dry	2.00	98 80-120
Silver	1.99	0.10 mg/kg dry	2.00	99 80-120
Strontium	1.87	0.04 mg/kg dry	2.00	93 80-120
Thallium	2.05	0.02 mg/kg dry	1.99	103 80-120
Tin	2.10	0.20 mg/kg dry	2.00	105 80-120
Tungsten	1.99	0.04 mg/kg dry	2.00	99 80-120
Uranium	2.03	0.010 mg/kg dry	2.00	101 80-120
Vanadium	2.0	1.0 mg/kg dry	2.00	98 80-120
Zinc	2.0	2.0 mg/kg dry	2.00	100 80-120
Reference (B1D3011-SRM1)			Prepared:	2021-04-30, Analyzed: 2021-05-01
Aluminum	11300	40 mg/kg dry	11500	98 70-130
Antimony	0.70	0.10 mg/kg dry	0.724	97 70-130
Arsenic	81.7	0.30 mg/kg dry	82.1	99 70-130
Barium	43.3	1.0 mg/kg dry	40.0	108 70-130
Beryllium	0.36	0.10 mg/kg dry	0.369	96 70-130
Chromium	63.6	1.0 mg/kg dry	63.1	101 70-130
Cobalt	10.4	0.10 mg/kg dry	10.4	100 70-130
Copper	19.5	0.40 mg/kg dry	19.8	99 70-130
Iron	18300	20 mg/kg dry	20200	91 70-130
Lead	17.0	0.20 mg/kg dry	17.3	98 70-130
Manganese	313	0.40 mg/kg dry	315	99 70-130
Mercury	0.107	0.040 mg/kg dry	0.110	98 70-130
Molybdenum	0.63	0.10 mg/kg dry	0.619	102 70-130
Nickel	31.9	0.60 mg/kg dry	31.7	101 70-130
Silver	1.49	0.10 mg/kg dry	1.75	85 70-130
Strontium	20.6	0.20 mg/kg dry	20.3	101 70-130
Uranium	1.18	0.050 mg/kg dry	1.18	100 70-130
Vanadium	34.6	1.0 mg/kg dry	33.5	103 70-130
Zinc	37.6	2.0 mg/kg dry	40.2	93 70-130

APPENDIX 3: REVISION HISTORY

REPORTED TO PROJECT	Thurber Eng 28847	hurber Engineering Ltd. (Vancouver) 8847		WORK ORDER REPORTED	21D2772 2021-05-05 13:14
Sample ID	Changed	Change	Analysis	Analyte(s)	
21D2772-	2021-05-05	Project	N/A	N/A	
21D2772-12	2021-05-05	Made Non-Reportable	Polycyclic Aromatic Hydrocarbons	2-Chloronaphthale	ne
21D2772-20	2021-05-05	Made Non-Reportable	Polycyclic Aromatic Hydrocarbons	2-Chloronaphthale	ne
21D2772-31	2021-05-05	Made Non-Reportable	Polycyclic Aromatic Hydrocarbons	2-Chloronaphthale	ne
21D2772-36	2021-05-05	Made Non-Reportable	Polycyclic Aromatic Hydrocarbons	2-Chloronaphthale	ne

CERTIFICATE OF ANALYSIS

REPORTED TO	Thurber Engineering Ltd. (Vancouver) 900 - 1281 West Georgia Street Vancouver, BC V6E 3J7		
ATTENTION		WORK ORDER	23J2230
PO NUMBER	28847	RECEIVED / TEMP	2023-10-18 14:50 / 7.5°C
PROJECT	28847	REPORTED	2023-10-30 13:11
PROJECT INFO		COC NUMBER	No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

with

likely you are to give us continued

members;

our

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

We've Got Chemistry

working

team

opportunities to support you.

enjoy

engaged

It's simple. We figure the more you fun

the

and

more

Ahead of the Curve

Through research, regulation instrumentation, knowledge, and we are your analytical centre for the technica knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

Work Order Comments:

This is a revised report; please refer to Appendix 3 for details.

By engaging our services, you are agreeing to CARO Analytical Service's Standard Terms and Conditions outlined here: https://www.caro.ca/terms-conditions

If you have any questions or concerns, please contact me at

Authorized By:

Account Manager

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7 | #108 4475 Wayburne Drive Burnaby, BC V5G 4X4

REPORTED TO Thurber Engineering Ltd PROJECT 28847	d. (Vancouver)		WORK ORDER REPORTED	23J2230 2023-10-30 13:11	
Analyte	Result	RL	Units	Analyzed	Qualifier
TH23-02-02 (23J2230-01) Matrix: Soil S	ampled: 2023-10-06				
BCMOE Aggregate Hydrocarbons					
EPHs10-19	< 50	50	mg/kg dry	2023-10-21	
EPHs19-32	85	50	mg/kg dry	2023-10-21	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	85	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	65	60-140	%	2023-10-21	
General Parameters					
Moisture	29.0	1.0	% wet	2023-10-20	
pH (1:2 H2O Solution)	5.98	0.10	pH units	2023-10-24	
Polycyclic Aromatic Hydrocarbons (PAH)					
1-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
2-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Chrysene	< 0.050	0.050	mg/kg dry	2023-10-21	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluorene	< 0.050	0.050	mg/kg dry	2023-10-21	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Naphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Phenanthrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Quinoline	< 0.050	0.050	mg/kg dry	2023-10-21	
Surrogate: Acenaphthene-d10	91	50-140	%	2023-10-21	
Surrogate: Chrysene-d12	94	50-140	%	2023-10-21	
Surrogate: Naphthalene-d8	95	50-140	%	2023-10-21	
Surrogate: Perylene-d12	80	50-140	%	2023-10-21	
Surrogate: Phenanthrene-d10	93	55-140	%	2023-10-21	

Aluminum	22800	40 mg/kg dry	2023-10-26
Antimony	0.45	0.10 mg/kg dry	2023-10-26
Arsenic	4.24	0.30 mg/kg dry	2023-10-26
Barium	39.1	1.0 mg/kg dry	2023-10-26
Beryllium	0.30	0.10 mg/kg dry	2023-10-26
Boron	2.2	2.0 mg/kg dry	2023-10-26
Cadmium	0.181	0.040 mg/kg dry	2023-10-26

REPORTED TO	Thurber Engineering Ltd. (Vancouver)
PROJECT	28847

WORK ORDER REPORTED 23J2230 2023-10-30 13:11

Analyte	Result	RL Units	Analyzed	Qualifier
TH23-02-02 (23J2230-01) Matrix: Soil Sa	npled: 2023-10-06, Continued			

Strong Acid Leachable Metals, Continued

Chromium	14.6	1.0 mg/kg dry	2023-10-26
Cobalt	5.62	0.10 mg/kg dry	2023-10-26
Copper	32.3	0.40 mg/kg dry	2023-10-26
Iron	17700	20.0 mg/kg dry	2023-10-26
Lead	26.6	0.20 mg/kg dry	2023-10-26
Lithium	6.38	0.10 mg/kg dry	2023-10-26
Manganese	231	0.40 mg/kg dry	2023-10-26
Mercury	0.125	0.040 mg/kg dry	2023-10-26
Molybdenum	0.81	0.10 mg/kg dry	2023-10-26
Nickel	12.3	0.60 mg/kg dry	2023-10-26
Selenium	0.56	0.20 mg/kg dry	2023-10-26
Silver	0.17	0.10 mg/kg dry	2023-10-26
Strontium	17.6	0.20 mg/kg dry	2023-10-26
Thallium	< 0.10	0.10 mg/kg dry	2023-10-26
Tin	0.52	0.20 mg/kg dry	2023-10-26
Tungsten	0.24	0.20 mg/kg dry	2023-10-26
Uranium	0.460	0.050 mg/kg dry	2023-10-26
Vanadium	48.0	1.0 mg/kg dry	2023-10-26
Zinc	47.0	2.0 mg/kg dry	2023-10-26

TH23-02-02 (23J2230-01RE1) | Matrix: Soil | Sampled: 2023-10-06

General Parameters					
pH (1:2 H2O Solution)	5.28	0.10 pH units	2023-10-26		
Strong Acid Leachable Metals					
Cadmium	0.181	0.040 mg/kg dry	2023-10-26		
Iron	14300	20.0 mg/kg dry	2023-10-27		

TH23-02-02 (23J2230-01RE2) | Matrix: Soil | Sampled: 2023-10-06

General Parameters			
pH (1:2 H2O Solution)	5.30	0.10 pH units	2023-10-26
Strong Acid Leachable Metals			
Aluminum	22300	40 mg/kg dry	2023-10-27
Antimony	0.50	0.10 mg/kg dry	2023-10-27
Arsenic	4.21	0.30 mg/kg dry	2023-10-27
Barium	42.8	1.0 mg/kg dry	2023-10-27
Beryllium	0.28	0.10 mg/kg dry	2023-10-27
Boron	2.5	2.0 mg/kg dry	2023-10-27
Cadmium	0.152	0.040 mg/kg dry	2023-10-26
Chromium	13.7	1.0 mg/kg dry	2023-10-27

REPORTED TO	Thurber Engineering Ltd. (Vancouver)
PROJECT	28847

WORK ORDER REPORTED 23J2230 2023-10-30 13:11

Analyte	Result	RL	Units	Analyzed	Qualifier
TH23-02-02 (23J2230-01RE2)	Matrix: Soil Sampled: 2023-10-06, Continued				

Strong Acid Leachable Metals, Continued

Cobalt	5.40	0.10 mg/kg dry	2023-10-27
Copper	32.3	0.40 mg/kg dry	2023-10-27
Iron	16900	20.0 mg/kg dry	2023-10-27
Lead	29.0	0.20 mg/kg dry	2023-10-27
Lithium	5.68	0.10 mg/kg dry	2023-10-27
Manganese	233	0.40 mg/kg dry	2023-10-27
Mercury	0.125	0.040 mg/kg dry	2023-10-27
Molybdenum	0.86	0.10 mg/kg dry	2023-10-27
Nickel	11.7	0.60 mg/kg dry	2023-10-27
Selenium	0.52	0.20 mg/kg dry	2023-10-27
Silver	0.15	0.10 mg/kg dry	2023-10-27
Strontium	17.3	0.20 mg/kg dry	2023-10-27
Thallium	< 0.10	0.10 mg/kg dry	2023-10-27
Tin	0.54	0.20 mg/kg dry	2023-10-27
Tungsten	0.31	0.20 mg/kg dry	2023-10-27
Uranium	0.481	0.050 mg/kg dry	2023-10-27
Vanadium	47.2	1.0 mg/kg dry	2023-10-27
Zinc	43.0	2.0 mg/kg dry	2023-10-27

TH23-03-01 (23J2230-02) | Matrix: Soil | Sampled: 2023-10-06

BCMOE Aggregate Hydrocarbons

EPHs10-19	< 50	50	mg/kg dry	2023-10-21	
EPHs19-32	76	50	mg/kg dry	2023-10-21	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	76	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	65	60-140	%	2023-10-21	
General Parameters					
Moisture	4.8	1.0	% wet	2023-10-20	
pH (1:2 H2O Solution)	6.15	0.10	pH units	2023-10-24	
Polycyclic Aromatic Hydrocarbons (PAH)					
1-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
2-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	

REPORTED TO	Thurber Engineering Ltd. (Vancouver)
PROJECT	28847

WORK ORDER 23 REPORTED 20

23J2230 2023-10-30 13:11

Analyte	Result	RL	Units	Analyzed	Qualifier
TH23-03-01 (23J2230-02) Matrix: \$	Soil Sampled: 2023-10-06, Continued				
Polycyclic Aromatic Hydrocarbons (P	AH), Continued				
Chrysene	< 0.050	0.050	mg/kg dry	2023-10-21	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluorene	< 0.050	0.050	mg/kg dry	2023-10-21	
Indeno(1,2,3-cd)pyrene	< 0 <u>.</u> 050	0.050	mg/kg dry	2023-10-21	
Naphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Phenanthrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Quinoline	< 0.050	0.050	mg/kg dry	2023-10-21	
Surrogate: Acenaphthene-d10	86	50-140	%	2023-10-21	
Surrogate: Chrysene-d12	93	50-140	%	2023-10-21	
Surrogate: Naphthalene-d8	88	50-140	%	2023-10-21	
Surrogate: Perylene-d12	77	50-140	%	2023-10-21	
Surrogate: Phenanthrene-d10	92	55-140	%	2023-10-21	

Strong Acid Leachable Metals

Antimony 0.74 0.10 mg/kg dry 2023-10-20 Arsenic 5.45 0.30 mg/kg dry 2023-10-20 Barium 56.3 1.0 mg/kg dry 2023-10-20 Beryllium 0.33 0.10 mg/kg dry 2023-10-20 Boron 2.2 2.0 mg/kg dry 2023-10-20 Cadmium 0.228 0.040 mg/kg dry 2023-10-20 Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Marganese 580 0.40 mg/kg dry 2023-10-20 Marganese 580 0.40 mg/kg dry 2023-10-20 Molybdenum
Arsenic 5.45 0.30 mg/kg dry 2023-10-20 Barium 56.3 1.0 mg/kg dry 2023-10-20 Beryllium 0.33 0.10 mg/kg dry 2023-10-20 Boron 2.2 2.0 mg/kg dry 2023-10-20 Cadmium 0.228 0.040 mg/kg dry 2023-10-20 Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Nickel
Barium 56.3 1.0 mg/kg dry 2023-10-20 Beryllium 0.33 0.10 mg/kg dry 2023-10-20 Boron 2.2 2.0 mg/kg dry 2023-10-20 Cadmium 0.228 0.040 mg/kg dry 2023-10-20 Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Nickel
Beryllium 0.33 0.10 mg/kg dry 2023-10-20 Boron 2.2 2.0 mg/kg dry 2023-10-20 Cadmium 0.228 0.040 mg/kg dry 2023-10-20 Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Silver 0.63 0.20 mg/kg dry 2023-10-20
Boron 2.2 2.0 mg/kg dry 2023-10-20 Cadmium 0.228 0.040 mg/kg dry 2023-10-20 Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Cadmium 0.228 0.040 mg/kg dry 2023-10-20 Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Chromium 15.2 1.0 mg/kg dry 2023-10-20 Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Cobalt 6.93 0.10 mg/kg dry 2023-10-20 Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Copper 26.2 0.40 mg/kg dry 2023-10-20 Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Iron 19500 20.0 mg/kg dry 2023-10-20 Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Lead 36.6 0.20 mg/kg dry 2023-10-20 Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Lithium 6.62 0.10 mg/kg dry 2023-10-20 Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Manganese 580 0.40 mg/kg dry 2023-10-20 Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Mercury 0.170 0.040 mg/kg dry 2023-10-20 Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Molybdenum 0.79 0.10 mg/kg dry 2023-10-20 Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Nickel 13.6 0.60 mg/kg dry 2023-10-20 Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Selenium 0.63 0.20 mg/kg dry 2023-10-20 Silver 0.16 0.10 mg/kg dry 2023-10-20
Silver 0.16 0.10 mg/kg dry 2023-10-20 Silver 202 </td
Strontium 21.5 0.20 mg/kg dry 2023-10-20
Thallium < 0.10 0.10 mg/kg dry 2023-10-20
Tin 0.70 0.20 mg/kg dry 2023-10-20
Tungsten 0.43 0.20 mg/kg dry 2023-10-20
Uranium 0.471 0.050 mg/kg dry 2023-10-20
Vanadium 52.2 1.0 mg/kg dry 2023-10-20
Zinc 57.6 2.0 mg/kg dry 2023-10-20

REPORTED TO Thurber Engineering Ltd PROJECT 28847	I. (Vancouver)		WORK ORDER REPORTED	23J2230 2023-10-3	0 13:11
Analyte	Result	RL	Units	Analyzed	Qualifier
TH23-04-03 (23J2230-03) Matrix: Soil Sa	mpled: 2023-10-06				
BCMOE Aggregate Hydrocarbons					
EPHs10-19	< 50	50	mg/kg dry	2023-10-21	
EPHs19-32	< 50	50	mg/kg dry	2023-10-21	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	< 50	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	67	60-140	%	2023-10-21	
General Parameters					
Moisture	20.4	1.0	% wet	2023-10-20	
pH (1:2 H2O Solution)	7.03	0.10	pH units	2023-10-24	
Polycyclic Aromatic Hydrocarbons (PAH)			-		
1-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
2-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Chrysene	< 0.050	0.050	mg/kg dry	2023-10-21	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluorene	< 0.050	0.050	mg/kg dry	2023-10-21	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Naphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Phenanthrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Quinoline	< 0.050	0.050	mg/kg dry	2023-10-21	
Surrogate: Acenaphthene-d10	92	50-140	%	2023-10-21	
Surrogate: Chrysene-d12	90	50-140	%	2023-10-21	
Surrogate: Naphthalene-d8	93	50-140	%	2023-10-21	
Surrogate: Perylene-d12	83	50-140	%	2023-10-21	
Surrogate: Phenanthrene-d10	92	55-140	%	2023-10-21	

Strong Acid Leachable Metals

Aluminum	38400	40 mg/kg dry	2023-10-20
Antimony	0.32	0.10 mg/kg dry	2023-10-20
Arsenic	7.92	0.30 mg/kg dry	2023-10-20
Barium	161	1.0 mg/kg dry	2023-10-20
Beryllium	0.63	0.10 mg/kg dry	2023-10-20
Boron	2.3	2.0 mg/kg dry	2023-10-20
Cadmium	0.131	0.040 mg/kg dry	2023-10-20

REPORTED TO	Thurber Engineering Ltd. (Vancouver)
PROJECT	28847

WORK ORDER 23 REPORTED 20

23J2230 2023-10-30 13:11

Analyte	Result	RL Units	Analyzed	Qualifier
TH23-04-03 (23J2230-03) Ma	trix: Soil Sampled: 2023-10-06, Continu	led		
Strong Acid Leachable Metals, C	Continued			
Chromium	31.9	1.0 mg/kg dry	2023-10-20	
Cobalt	15.5	0.10 mg/kg dry	2023-10-20	
Copper	60.9	0.40 mg/kg dry	2023-10-20	
Iron	40000	20.0 mg/kg dry	2023-10-20	
Lead	9.51	0.20 mg/kg dry	2023-10-20	
Lithium	12.9	0.10 mg/kg dry	2023-10-20	
Manganese	744	0.40 mg/kg dry	2023-10-20	
Mercury	< 0.040	0.040 mg/kg dry	2023-10-20	
Molybdenum	0.89	0.10 mg/kg dry	2023-10-20	
Nickel	24.1	0.60 mg/kg dry	2023-10-20	
Selenium	< 0.20	0.20 mg/kg dry	2023-10-20	
Silver	< 0.10	0.10 mg/kg dry	2023-10-20	
Strontium	59.7	0.20 mg/kg dry	2023-10-20	

Thallium	0.14	0.10 mg/kg dry	2023-10-20
Tin	0.50	0.20 mg/kg dry	2023-10-20
Tungsten	< 0.20	0.20 mg/kg dry	2023-10-20
Uranium	0.961	0.050 mg/kg dry	2023-10-20
Vanadium	99.3	1.0 mg/kg dry	2023-10-20
Zinc	86.9	2.0 mg/kg dry	2023-10-20

TH23-04-03 (23J2230-03RE1) | Matrix: Soil | Sampled: 2023-10-06

Strong Acid Leachable Metals			
Iron	34600	20.0 mg/kg dry	2023-10-26
TH23-04-03 (23J2230-03RE2) Matrix: Soil	Sampled: 2023-10-06		
Strong Acid Leachable Metals			
Iron	33100	20.0 mg/kg dry	2023-10-26
TH23-05-01 (23J2230-04) Matrix: Soil Sa BCMOE Aggregate Hydrocarbons	mpled: 2023-10-06		
EPHs10-19	< 50	50 ma/ka drv	2023-10-24
EPHs19-32	< 50	50 mg/kg dry	2023-10-24
LEPHs	< 50	50 mg/kg dry	N/A
HEPHs	< 50	50 mg/kg dry	N/A
Surrogate: 2-Methylnonane (EPH/F2-4)	65	60-140 %	2023-10-24
General Parameters			
Moisture	18.3	1.0 % wet	2023-10-20
pH (1:2 H2O Solution)	6.01	0.10 pH units	2023-10-24

REPORTED TO	Thurber Engineering Ltd. (Vancouver)
PROJECT	28847

WORK ORDER 23 REPORTED 20

23J2230 2023-10-30 13:11

Analyte	Result	RL	Units	Analyzed	Qualifier
TH23-05-01 (23J2230-04) Matrix: Soi	I Sampled: 2023-10-06, Continued				
Polycyclic Aromatic Hydrocarbons (PAH))				
1-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
2-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Chrysene	< 0.050	0.050	mg/kg dry	2023-10-21	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluorene	< 0.050	0.050	mg/kg dry	2023-10-21	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Naphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Phenanthrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Quinoline	< 0.050	0.050	mg/kg dry	2023-10-21	
Surrogate: Acenaphthene-d10	83	50-140	%	2023-10-21	
Surrogate: Chrysene-d12	84	50-140	%	2023-10-21	
Surrogate: Naphthalene-d8	79	50-140	%	2023-10-21	
Surrogate: Perylene-d12	74	50-140	%	2023-10-21	
Surrogate: Phenanthrene-d10	83	55-140	%	2023-10-21	

Strong Acid Leachable Metals

Aluminum	22800	40 mg/kg dry	2023-10-20
Antimony	0.10	0.10 mg/kg dry	2023-10-20
Arsenic	2.54	0.30 mg/kg dry	2023-10-20
Barium	84.5	1.0 mg/kg dry	2023-10-20
Beryllium	0.20	0.10 mg/kg dry	2023-10-20
Boron	< 2.0	2.0 mg/kg dry	2023-10-20
Cadmium	0.045	0.040 mg/kg dry	2023-10-20
Chromium	17.8	1.0 mg/kg dry	2023-10-20
Cobalt	6.87	0.10 mg/kg dry	2023-10-20
Copper	19.9	0.40 mg/kg dry	2023-10-20
Iron	18900	20.0 mg/kg dry	2023-10-20
Lead	3.35	0.20 mg/kg dry	2023-10-20
Lithium	6.14	0.10 mg/kg dry	2023-10-20
Manganese	279	0.40 mg/kg dry	2023-10-20
Mercury	< 0.040	0.040 mg/kg dry	2023-10-20
Molybdenum	0.38	0.10 mg/kg dry	2023-10-20
Nickel	8.79	0.60 mg/kg dry	2023-10-20

REPORTED TO	Thurber Engineering Ltd. (Vancouver)
PROJECT	28847

WORK ORDER REPORTED 23J2230 2023-10-30 13:11

Analyte	Result	RL Units	Analyzed	Qualifier

TH23-05-01 (23J2230-04) | Matrix: Soil | Sampled: 2023-10-06, Continued

Strong Acid Leachable Metals, Continued

Selenium	< 0.20	0.20 mg/kg dry	2023-10-20	
Silver	< 0.10	0.10 mg/kg dry	2023-10-20	
Strontium	75.8	0.20 mg/kg dry	2023-10-20	
Thallium	< 0.10	0.10 mg/kg dry	2023-10-20	
Tin	0.20	0.20 mg/kg dry	2023-10-20	
Tungsten	< 0.20	0.20 mg/kg dry	2023-10-20	
Uranium	0.524	0.050 mg/kg dry	2023-10-20	
Vanadium	57.2	1.0 mg/kg dry	2023-10-20	
Zinc	30.7	2.0 mg/kg dry	2023-10-20	

TH23-06-01 (23J2230-05) | Matrix: Soil | Sampled: 2023-10-06

BCMOE Aggregate Hydrocarbons

EPHs10-19	< 50	50	mg/kg dry	2023-10-24	
EPHs19-32	< 50	50	mg/kg dry	2023-10-24	
LEPHs	< 50	50	mg/kg dry	N/A	
HEPHs	< 50	50	mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	65	60-140	%	2023-10-24	
General Parameters					
Moisture	12.8	1.0	% wet	2023-10-20	
pH (1:2 H2O Solution)	6.75	0.10	pH units	2023-10-24	
Polycyclic Aromatic Hydrocarbons (PAH)					
1-MethyInaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
2-Methylnaphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benz(a)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(a)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(b+j)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(g,h,i)perylene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(k)fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Chrysene	< 0.050	0.050	mg/kg dry	2023-10-21	
Dibenz(a,h)anthracene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluoranthene	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluorene	< 0.050	0.050	mg/kg dry	2023-10-21	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Naphthalene	< 0.050	0.050	mg/kg dry	2023-10-21	
Phenanthrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Pyrene	< 0.050	0.050	mg/kg dry	2023-10-21	
Quinoline	< 0.050	0.050	mg/kg dry	2023-10-21	

REPORTED TO Thurber Engineering PROJECT 28847		ng Ltd. (Vancouver)		WORK ORDER REPORTED	R 23J2230 2023-10-30 13:11	
Analyte		Result	RL	Units	Analyzed	Qualifier
TH23-06-01 (23J22	230-05) Matrix: So	il Sampled: 2023-10	-06, Continued			
Polycyclic Aromatic	Hydrocarbons (PAH), Continued				
Surrogate: Acenap	hthene-d10	82	50-140	%	2023-10-21	
Surrogate: Chryser	ne-d12	88	50-140	%	2023-10-21	
Surrogate: Naphtha	alene-d8	84	50-140	%	2023-10-21	
Surrogate: Perylen	e-d12	73	50-140	%	2023-10-21	
Surrogate: Phenan	threne-d10	83	55-140	%	2023-10-21	
Strong Acid Leacha	ble Metals					
Aluminum		15400	40	ma/ka dry	2023-10-20	
Antimony		0,12	0.10	mg/kg dry	2023-10-20	
Arsenic		2.54	0.30	mg/kg dry	2023-10-20	
Barium		44.5	1.0	mg/kg dry	2023-10-20	
Beryllium		0.18	0.10	mg/kg dry	2023-10-20	
Boron		< 2.0	2.0	mg/kg dry	2023-10-20	
Cadmium		0.062	0.040	mg/kg dry	2023-10-20	
Chromium		16.2	1.0	mg/kg dry	2023-10-20	
Cobalt		5.21	0.10	mg/kg dry	2023-10-20	
Copper		17.7	0.40	mg/kg dry	2023-10-20	
Iron		17000	20.0	mg/kg dry	2023-10-20	
Lead		3.85	0.20	mg/kg dry	2023-10-20	
Lithium		5.93	0.10	mg/kg dry	2023-10-20	
Manganese		208	0.40	mg/kg dry	2023-10-20	
Mercury		< 0.040	0.040	mg/kg dry	2023-10-20	
Molybdenum		0.46	0.10	mg/kg dry	2023-10-20	
Nickel		9 <u>.</u> 11	0.60	mg/kg dry	2023-10-20	
Selenium		< 0.20	0.20	mg/kg dry	2023-10-20	
Silver		< 0.10	0.10	mg/kg dry	2023-10-20	
Strontium		27.9	0.20	mg/kg dry	2023-10-20	
Thallium		< 0.10	0.10	mg/kg dry	2023-10-20	
Tin		< 0.20	0.20	mg/kg dry	2023-10-20	
Tungsten		< 0.20	0.20	mg/kg dry	2023-10-20	
Uranium		0.423	0.050	mg/kg dry	2023-10-20	
Vanadium		54.7	1.0	mg/kg dry	2023-10-20	
Zinc		28.6	2.0	mg/kg dry	2023-10-20	

TH23-B (23J2230-06) | Matrix: Soil | Sampled: 2023-10-06

BCMOE Aggregate Hydrocarbons

EPHs10-19	< 50	50 mg/kg dry	2023-10-21	
EPHs19-32	< 50	50 mg/kg dry	2023-10-21	
LEPHs	< 50	50 mg/kg dry	N/A	
HEPHs	< 50	50 mg/kg dry	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	65	60-140 %	2023-10-21	

TEST RESULTS

REPORTED TO PROJECT 2	Thurber Engineering 28847	J Ltd. (Vancouver)		WORK ORDER REPORTED	23J2230 2023-10-3	0 13:11
Analyte		Result	RL	Units	Analyzed	Qualifier
TH23-B (23J2230-06	6) Matrix: Soil Sa	mpled: 2023-10-06, Continued				
General Parameters						
Moisture		20.9	1.0	% wet	2023-10-20	
pH (1:2 H2O Solution	n)	7.55	0.10	pH units	2023-10-24	
Polvcvclic Aromatic H	· Ivdrocarbons (PAH)			•		
1-Methvinaphthalene	,	< 0.050	0.050	ma/ka drv	2023-10-21	
2-Methylnaphthalene	2 	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthene	·	< 0.050	0.050	mg/kg dry	2023-10-21	
Acenaphthylene		< 0.050	0.050	ma/ka dry	2023-10-21	
Anthracene		< 0.050	0.050	ma/ka drv	2023-10-21	
Benz(a)anthracene		< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(a)pyrene		< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(b+j)fluoranthe	ene	< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(g,h,i)perylene		< 0.050	0.050	mg/kg dry	2023-10-21	
Benzo(k)fluoranthen	e	< 0.050	0.050	mg/kg dry	2023-10-21	
Chrysene		< 0.050	0.050	mg/kg dry	2023-10-21	
Dibenz(a,h)anthrace	ne	< 0.050	0.050	mg/kg dry	2023-10-21	
Fluoranthene		< 0.050	0.050	mg/kg dry	2023-10-21	
Fluorene		< 0.050	0.050	mg/kg dry	2023-10-21	
Indeno(1,2,3-cd)pyre	ene	< 0.050	0.050	mg/kg dry	2023-10-21	
Naphthalene		< 0.050	0.050	mg/kg dry	2023-10-21	
Phenanthrene		< 0.050	0.050	mg/kg dry	2023-10-21	
Pyrene		< 0.050	0.050	mg/kg dry	2023-10-21	
Quinoline		< 0.050	0.050	mg/kg dry	2023-10-21	
Surrogate: Acenapht	hene-d10	88	50-140	%	2023-10-21	
Surrogate: Chrysene	-d12	94	50-140	%	2023-10-21	
Surrogate: Naphthale	ene-d8	91	50-140	%	2023-10-21	
Surrogate: Perylene-	d12	78	50-140	%	2023-10-21	
Surrogate: Phenanth	rene-d10	86	55-140	%	2023-10-21	

Strong Acid Leachable Metals

Aluminum	33100	40	mg/kg dry	2023-10-20
Antimony	0.35	0.10	mg/kg dry	2023-10-20
Arsenic	7.58	0.30	mg/kg dry	2023-10-20
Barium	137	1.0	mg/kg dry	2023-10-20
Beryllium	0.57	0.10	mg/kg dry	2023-10-20
Boron	< 2.0	2.0	mg/kg dry	2023-10-20
Cadmium	0.111	0.040	mg/kg dry	2023-10-20
Chromium	27.9	1.0	mg/kg dry	2023-10-20
Cobalt	14.7	0.10	mg/kg dry	2023-10-20
Copper	50.7	0.40	mg/kg dry	2023-10-20
Iron	35600	20.0	mg/kg dry	2023-10-20
Lead	8.20	0.20	mg/kg dry	2023-10-20
Lithium	11.0	0.10	mg/kg dry	2023-10-20
Manganese	628	0.40	mg/kg dry	2023-10-20

30 Page 11 of

TEST RESULTS

REPORTED TO PROJECT	Thurber Engineering Ltd. (Vancouver) 28847		WORK ORDER REPORTED	23J2230 2023-10-30 13:11	
Analyte	Result	RL	Units	Analyzed	Qualifier
TH23-B (23J2230	-06) Matrix: Soil Sampled: 2023-10-06, Continued				
Strong Acid Leach	able Metals, Continued				
Mercury	< 0.040	0.040	mg/kg dry	2023-10-20	
Molybdenum	1.11	0.10	mg/kg dry	2023-10-20	
Nickel	21.6	0.60	mg/kg dry	2023-10-20	
Selenium	< 0.20	0.20	mg/kg dry	2023-10-20	
Silver	< 0.10	0.10	mg/kg dry	2023-10-20	
Strontium	54.8	0.20	mg/kg dry	2023-10-20	
Thallium	0.13	0.10	mg/kg dry	2023-10-20	
Tin	0.54	0.20	mg/kg dry	2023-10-20	
Tungsten	< 0.20	0.20	mg/kg dry	2023-10-20	
Uranium	0.899	0.050	mg/kg dry	2023-10-20	
Vanadium	93.4	1.0	mg/kg dry	2023-10-20	
Zinc	73.9	2.0	mg/kg dry	2023-10-20	
ТН23-В (23J2230	-06RE1) Matrix: Soil Sampled: 2023-10-06				
Strong Acid Leach	able Metals				
Iron	40800	20.0	mg/kg dry	2023-10-26	
ТН23-В (23J2230	-06RE2) Matrix: Soil Sampled: 2023-10-06				
Strong Acid Leach	able Metals				
Iron	36900	20.0	mg/kg dry	2023-10-26	

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TOThurber Engineering Ltd. (Vancouver)**PROJECT**28847

 WORK ORDER
 23J2230

 REPORTED
 2023-10

23J2230 2023-10-30 13:11

Analysis Description	Method Ref.	Technique	Accredited	Location
EPH in Soil	EPA 3570* / BCMOE EPHs*	Shaker Extraction (Hexane-Acetone 1:1) / Gas Chromatography (GC-FID)	\checkmark	Richmond
HEPHs in Soil	BCMOE LEPH/HEPH	Calculation		N/A
LEPHs in Soil	BCMOE LEPH/HEPH	Calculation		N/A
Moisture in Soil	ASTM D2974-87*	Gravimetry (Dried at 105C)		N/A
pH in Soil	Carter 16.2 / SM 4500 - H+ B (2021)	1:2 Soil/Water Slurry / Electrometry	\checkmark	Richmond
Polycyclic Aromatic Hydrocarbons in Soil	EPA 3570* / EPA 8270D	Shaker Extraction (Hexane-Acetone 1:1) / GC-MSD (SIM)	\checkmark	Richmond
SALM in Soil	BCMOE SALM V.2 / EPA 6020B	HNO3+HCI Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL	Reporting Limit (default)
% wet	Percent (as received basis)
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
mg/kg dry	Milligrams per kilogram (dry weight basis)
pH units	pH < 7 = acidic, ph > 7 = basic
ASTM	ASTM International Test Methods
BCMOE	British Columbia Environmental Laboratory Manual, British Columbia Ministry of Environment
EPA	United States Environmental Protection Agency Test Methods
SM	Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the received samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Caro will dispose of all samples within 30 days of sample receipt, unless otherwise agreed.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:pmand@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO	Thurber Engineering Ltd. (Vancouver)	WORK ORDER	23J2230
PROJECT	28847	REPORTED	2023-10-30 13:11

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- **Reference Material (SRM)**: A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike	Source	% REC	REC	% RPD RPD	Qualifier
			Level	Result	<i>/////20</i>	Limit	Limit	Quanto

BCMOE Aggregate Hydrocarbons, Batch B3J1948

Blank (B3J1948-BLK1)			Prepared: 20	23-10-20, Analyze	d: 2023-10-20	
EPHs10-19	< 50	50 mg/kg wet				
EPHs19-32	< 50	50 mg/kg wet				
Surrogate: 2-Methylnonane (EPH/F2-4)	48.3	mg/kg wet	78.4	62	60-140	
Blank (B3J1948-BLK2)			Prepared: 20	23-10-20, Analyze	d: 2023-10-20	
EPHs10-19	< 50	50 mg/kg wet				
EPHs19-32	< 50	50 mg/kg wet				
Surrogate: 2-Methylnonane (EPH/F2-4)	51.4	mg/kg wet	76.8	67	60-140	
LCS (B3J1948-BS2)			Prepared: 20	23-10-20, Analyze	d: 2023-10-20	
EPHs10-19	2900	50 mg/kg wet	2720	108	70-130	
EPHs10-19 EPHs19-32	2900 3700	50 mg/kg wet 50 mg/kg wet	2720 3900	108 95	70-130 70-130	
EPHs10-19 EPHs19-32 Surrogate: 2-Methylnonane (EPH/F2-4)	2900 3700 55.6	50 mg/kg wet 50 mg/kg wet mg/kg wet	2720 3900 77.6	108 95 72	70-130 70-130 <i>60-140</i>	
EPHs10-19 EPHs19-32 Surrogate: 2-Methylnonane (EPH/F2-4) LCS (B3J1948-BS4)	2900 3700 55.6	50 mg/kg wet 50 mg/kg wet mg/kg wet	2720 3900 77.6 Prepared: 20	108 95 72 23 -10-20, Analyze	70-130 70-130 <i>60-140</i> d: 2023 -10- 20	
EPHs10-19 EPHs19-32 <i>Surrogate: 2-Methylnonane (EPH/F2-4)</i> LCS (B3J1948-BS4) EPHs10-19	2900 3700 55.6 3000	50 mg/kg wet 50 mg/kg wet <i>mg/kg wet</i> 50 mg/kg wet	2720 3900 77.6 Prepared: 20 2800	108 95 72 23 -10-20, Analyze 109	70-130 70-130 60-140 d: 2023-10-20 70-130	
EPHs10-19 EPHs19-32 <i>Surrogate: 2-Methylnonane (EPH/F2-4)</i> LCS (B3J1948-BS4) EPHs10-19 EPHs19-32	2900 3700 55.6 3000 3800	50 mg/kg wet 50 mg/kg wet <i>mg/kg wet</i> 50 mg/kg wet 50 mg/kg wet	2720 3900 77.6 Prepared: 20 2800 4020	108 95 72 23-10-20, Analyze 109 96	70-130 70-130 60-140 d: 2023-10-20 70-130 70-130	

General Parameters, Batch B3J2301

Duplicate (B3J2301-DUP3)	Source	: 23J2230-01	1 Prepared: 2023-10-24, Analyzed: 2023-10-24				
pH (1:2 H2O Solution)	5.97	0.10 pH units	5.98		< 1	4	
Reference (B3J2301-SRM1)			Prepared: 2023-10-24,	Analyze	d: 2023-10-24		
pH (1:2 H2O Solution)	6.86	0.10 pH units	7.05	97	95-105		
Reference (B3J2301-SRM2)			Prepared: 2023-10-24,	Analyze	d: 2023-10-24		
pH (1:2 H2O Solution)	7.01	0.10 pH units	7.05	99	95-105		
Reference (B3J2301-SRM3)			Prepared: 2023-10-24,	Analyze	d: 2023-10-24		
pH (1:2 H2O Solution)	6.99	0.10 pH units	7.05	99	95-105		

General Parameters, Batch B3J2670

REPORTED TO Thurber Engin PROJECT 28847	eering Ltd. (Vancouv	er)		_	WORK REPOR	ORDER RTED	23J2 2023	230 -10-30	13:11
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B3J2670), Continued								
Reference (B3J2670-SRM1)			Prepared	1: 2023-10-2	6. Analvze	d: 2023-1	0-26		
pH (1:2 H2O Solution)	7.07	0.10 pH units	7.05		100	95-105			
Poforonoo (P2 12670 60842)			Droporce	1. 2022 10 2	6 Analyza	d 2022 4	0-26		
nH (1:2 H2O Solution)	7 11	0.10 pH unita		1. 2023-10-2		05 105	0-20		
Polycyclic Aromatic Hydrocarbons (PAH), Batch B3J1948		7.05		101	95-105			
Blank (B3J1948-BLK1)			Prepared	l: 2023-10-2	0, Analyze	d: 2023-1	0-20		
1-Methylnaphthalene	< 0.050	0.050 mg/kg wet	•						
2-Methylnaphthalene	< 0.050	0.050 mg/kg wet							
Acenaphthene	< 0.050	0.050 mg/kg wet							
Acenaphthylene	< 0.050	0.050 mg/kg wet							
Anthracene Benz(a)anthracene	< 0.050	0.050 mg/kg wet							
Benzo(a)pyrene	< 0.050	0.050 mg/kg wet							
Benzo(b+j)fluoranthene	< 0.050	0.050 ma/ka wet							
Benzo(g,h,i)perylene	< 0.050	0.050 mg/kg wet							
Benzo(k)fluoranthene	< 0.050	0.050 mg/kg wet							
Chrysene	< 0.050	0.050 mg/kg wet							
Dibenz(a,h)anthracene	< 0.050	0.050 mg/kg wet							
Fluoranthene	< 0.050	0.050 mg/kg wet							
Fluorene	< 0.050	0.050 mg/kg wet							
Nanhthalene	< 0.050	0.050 mg/kg wet							
Phenanthrene	< 0.050	0.050 mg/kg wet							
Pyrene	< 0.050	0.050 mg/kg wet							
Quinoline	< 0.050	0.050 mg/kg wet							
Surrogate: Acenaphthene-d10	0.715	mg/kg wet	0.790		91	50-140			
Surrogate: Chrysene-d12	0.796	mg/kg wet	0.790		101	50-140			
Surrogate: Naphthalene-d8	0.768	mg/kg wet	0.790		97	50-140			
Surrogate: Perylene-d12	0.604	mg/kg wet	0.790		76	50-140			
Surrogate: Phenanthrene-d10	0.704	mg/kg wet	0.790		89	55-140			
LCS (B3J1948-BS1)			Prepared	l: 2023-10-2	0, Analyze	d: 2023-1	0-20		
1-Methylnaphthalene	0.653	0.050 mg/kg wet	0.771		85	50-140			
2-Methylnaphthalene	0.659	0.050 mg/kg wet	0.771		85	50-140			
Acenaphthene	0.632	0.050 mg/kg wet	0.775		82	50-140			
Acenaphthylene	0.557	0.050 mg/kg wet	0.767		73	50-140			
Anthracene	0.606	0.050 mg/kg wet	0.775		78	50-140			
Benz(a)anthracene	0.598	0.050 mg/kg wet	0.775		17	50-140			
Benzo(b+i)fluoranthene	U.040 1 AR		0.767		04 71	50-140			
Benzo(a,h,i)pervlene	0 571	0.050 mg/kg wet	0.767		74	50-140			
Benzo(k)fluoranthene	0.712	0.050 mg/kg wet	0.771		92	50-140			
Chrysene	0.696	0.050 mg/kg wet	0.763		91	50-140			
Dibenz(a,h)anthracene	0.600	0.050 mg/kg wet	0.779		77	50-140			
Fluoranthene	0.498	0.050 mg/kg wet	0.779		64	50-140			
Fluorene	0.574	0.050 mg/kg wet	0.794		72	50-140			
Indeno(1,2,3-cd)pyrene	0.536	0.050 mg/kg wet	0.767		70	50-140			
Naphīnaiene Phenaphtrene	0.708	0.050 mg/kg wet	0.767		92	50 140			
Pyrene	0.027	0.050 mg/kg Wet	0.707		69	50-140			
Quinoline	0.799	0.050 ma/ka wet	0.779		103	50-140			
Surrogate: Acenaphthene-d10	0.652	ma/ka wet	0.779		84	50-140			
Surrogate: Chrysene-d12	0.743	mg/kg wet	0.779		95	50-140			
Surrogate: Naphthalene-d8	0.684	ma/ka wet	0.779		88	50-140			

Page 15 of 30

REPORTED TO PROJECT	Thurber Enginee 28847	ering Ltd. (Vancouver	(Vancouver)			WORK REPOR	ORDER 23J2230 RTED 2023-10-30		230 -10-30	0 13:11	
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Polycyclic Aromat	ic Hydrocarbons (P	AH), Batch B3J1948, (Continued								
LCS (B3J1948-BS	1), Continued			Preparec	I: 2023-10-2	20, Analyze	d: 2023-1	10-20			
Surrogate: Perylene-	-d12	0.497	mg/kg wet	0.779		64	50-140				
Surrogate: Phenanth	nrene-d10	0.601	ma/ka wet	0.779		77	55-140				

Strong Acid Leachable Metals, Batch B3J1953

Blank (B3J1953-BLK1)			Prepared: 2023-10-20, Analyzed: 2023-10-20	
Aluminum	< 40	40 mg/kg dry		
Antimony	< 0.10	0.10 mg/kg dry		
Arsenic	< 0.30	0.30 mg/kg dry		
Barium	< 1.0	1.0 mg/kg dry		
Beryllium	< 0.10	0.10 mg/kg dry		
Boron	< 2.0	2.0 mg/kg dry		
Cadmium	< 0.040	0.040 mg/kg dry		
Chromium	< 1.0	1.0 mg/kg dry		
Cobalt	< 0.10	0.10 mg/kg dry		
Copper	< 0.40	0.40 mg/kg dry		
Iron	50.5	20.0 mg/kg dry		BLK
Lead	< 0.20	0.20 mg/kg dry		
Lithium	< 0.10	0.10 mg/kg dry		
Manganese	0.88	0.40 mg/kg dry		BLK
Mercury	< 0.040	0.040 mg/kg dry		
Molybdenum	< 0.10	0.10 mg/kg dry		
Nickel	< 0.60	0.60 mg/kg dry		
Selenium	< 0.20	0.20 mg/kg dry		
Silver	< 0.10	0.10 mg/kg dry		
Strontium	< 0.20	0.20 mg/kg dry		
Thallium	< 0.10	0.10 mg/kg dry		
Tin	< 0.20	0.20 mg/kg dry		
Tungsten	< 0.20	0.20 mg/kg dry		
Uranium	< 0.050	0.050 mg/kg dry		
Vanadium	< 1.0	1.0 mg/kg dry		
Zinc	< 2.0	2.0 mg/kg dry		
LCS (B3J1953-BS1)			Prepared: 2023-10-20, Analyzed: 2023-10-20	

<u> </u>						
Aluminum	193	40 mg/kg dry	200	97	80-120	
Antimony	1.92	0.10 mg/kg dry	2.00	96	80-120	
Arsenic	19.7	0.30 mg/kg dry	20.0	98	80-120	
Barium	1.9	1.0 mg/kg dry	2.00	97	80-120	
Beryllium	1.97	0.10 mg/kg dry	2.00	98	80-120	
Boron	20.1	2.0 mg/kg dry	20.0	101	80-120	
Cadmium	1.90	0.040 mg/kg dry	2.00	95	80-120	
Chromium	2.0	1.0 mg/kg dry	2.00	102	80-120	
Cobalt	1.98	0.10 mg/kg dry	2.00	99	80-120	
Copper	1.99	0.40 mg/kg dry	2.00	100	80-120	
Iron	196	20.0 mg/kg dry	200	98	80-120	
Lead	1.94	0.20 mg/kg dry	2.00	97	80-120	
Lithium	1.97	0.10 mg/kg dry	2.00	99	80-120	
Manganese	2.07	0.40 mg/kg dry	2.00	103	80-120	
Mercury	0.191	0.040 mg/kg dry	0.200	95	80-120	
Molybdenum	1.90	0.10 mg/kg dry	2.00	95	80-120	
Nickel	1.97	0.60 mg/kg dry	2.00	99	80-120	
Selenium	19.8	0.20 mg/kg dry	20.0	99	80-120	
Silver	1.96	0.10 mg/kg dry	2.00	98	80-120	
Strontium	1.99	0.20 mg/kg dry	2.00	100	80-120	
Thallium	1.94	0.10 mg/kg dry	2.00	97	80-120	
Tin	1.92	0.20 mg/kg dry	2.00	96	80-120	

REPORTED TO PROJECT	Thurber Engineeri 28847	ng Ltd. (Vancouv	ver)			WORK REPOR	ORDER RTED	23J2 2023	230 -10-30	13:11
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Strong Acid Leacha	able Metals,Batch B3	3J1953, Continue	d							
LCS (B3J1953-BS1). Continued			Prepared	: 2023-10-2	0, Analyze	ed: 2023-1	10-20		
Tungsten	,,	2.02	0.20 ma/ka drv	2.00		101	80-120			
Uranium		1.97	0.050 mg/kg dry	2.00		99	80-120			
Vanadium		2.0	1.0 mg/kg dry	2.00		98	80-120			
Zinc		19.5	2.0 mg/kg dry	20.0		98	80-120			
Duplicate (B3J195	3-DUP1)	Sou	ce: 23J2230-06	Prepared	: 2023-10-2	0, Analyze	ed: 2023-1	10-20		
Aluminum		30200	40 mg/kg dry		33100			9	40	
Antimony		0.31	0.10 mg/kg dry		0.35				30	
Arsenic		6.70	0.30 mg/kg dry		7.58			12	30	
Barium		135	1.0 mg/kg dry		137			1	40	
Beryllium		0.51	0.10 mg/kg dry		0.57			12	30	
Boron		2.2	2.0 mg/kg dry		< 2.0				30	
Cadmium		0.114			27.9			3	30	
Cobalt		14.3	0.10 mg/kg dry		14.7			2	30	
Copper		47.2	0.40 mg/kg dry		50.7			7	30	
Iron		32700	20.0 mg/kg dry		35600			8	30	
Lead		7.68	0.20 mg/kg dry		8.20			7	40	
Lithium		9.50	0.10 mg/kg dry		11.0			15	30	
Manganese		602	0.40 mg/kg dry		628			4	30	
Mercury		< 0.040	0.040 mg/kg dry		< 0.040				40	
Molybdenum		0.90	0.10 mg/kg dry		1.11			20	40	
Selenium		20.9			< 0.20			4	30	
Silver		< 0.10	0.20 mg/kg dry		< 0.20				40	
Strontium		52.5	0.20 mg/kg dry		54.8			4	40	
Thallium		0.12	0.10 mg/kg dry		0.13				30	
Tin		0.47	0.20 mg/kg dry		0.54				40	
Tungsten		< 0.20	0.20 mg/kg dry		< 0.20				40	
Uranium		0.844	0.050 mg/kg dry		0.899			6	30	
Vanadium		88.9	1.0 mg/kg dry		93.4			5	30	
Zinc		69.2	2.0 mg/kg dry		73.9			1	30	
Reference (B3J195	53-SRM1)			Prepared	: 2023-10-2	0, Analyze	ed: 2023-1	10-20		
Aluminum		11400	40 mg/kg dry	12100		94	70-130			
Antimony		0.67	0.10 mg/kg dry	0.634		105	70-130			
Arsenic		86.0	0.30 mg/kg dry	83.6		103	70-130			
Barium		42.3	1.0 mg/kg dry	41.4		102	70-130			
Chromium		68.7		66.0		97	70-130			
Cobalt		10.8	0.10 mg/kg dry	10.8		104	70-130			
Copper		20.1	0.40 mg/kg dry	20.3		99	70-130			
Iron		20300	20.0 mg/kg dry	20400		100	70-130			
Lead		17.4	0.20 mg/kg dry	16.7		104	70-130			
Lithium		15.9	0.10 mg/kg dry	16.8		95	70-130			
Manganese		327	0.40 mg/kg dry	319		102	70-130			
Mercury		0.108	0.040 mg/kg dry	0.114		95	70-130			
Molybdenum		0.64	0.10 mg/kg dry	0.607		106	70-130			
Silver		32.9	0.60 mg/kg dry	32.5		101	70-130			
Strontium		1.0/ 22.7		22.5		101	70-130			
Thallium		< 0.10	0.10 ma/ka dry	0.0765		99	70-130			
Uranium		1.26	0.050 ma/ka drv	1.15		110	70-130			
Vanadium		37.3	1.0 mg/kg dry	36.3		103	70-130			
Zinc		39.3	2.0 mg/kg dry	39.7		99	70-130			

REPORTED TO	 Thurber Engineering Ltd. (Vancouver) 28847 				WORK ORDER			23J2230		
PROJECT					REPORTED			2023-10-30 13:11		
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	

Strong Acid Leachable Metals, Batch B3J2652

Blank (B3J2652-BLK1)			Prepared: 2	2023-10-26, Analyzed: 2023-10-26
Aluminum	< 40	40 mg/kg dry		
Antimony	< 0.10	0.10 mg/kg dry		
Arsenic	< 0.30	0.30 mg/kg dry		
Barium	< 1.0	1.0 mg/kg dry		
Beryllium	< 0.10	0.10 mg/kg dry		
Boron	< 2.0	2.0 mg/kg dry		
Cadmium	< 0.040	0.040 ma/ka drv		
Chromium	< 1.0	1.0 mg/kg drv		
Cobalt	< 0.10	0.10 mg/kg drv		
Copper	< 0.40	0.40 ma/ka drv		
Iron	< 20.0	20.0 mg/kg dry		
Lead	< 0.20	0 20 ma/ka drv		
Lithium	< 0 10	0 10 ma/ka drv		
Manganese	< 0.40	0.40 mg/kg dry		
Mercury	< 0.040	0.040 mg/kg dry		
Molvbdenum	< 0.10	0.10 mg/kg dry		
Nickel	< 0.60	0.60 mg/kg dry		
Selenium	< 0.20	0.20 mg/kg dry		
Silver	< 0.10	0.10 mg/kg dry		
Strontium	< 0.20	0.20 mg/kg dry		
Thallium	< 0.10	0.10 mg/kg dry		
Tin	< 0.20	0.20 mg/kg dry		
Tunasten	< 0.20	0.20 mg/kg dry		
Uranium	< 0.050	0.050 mg/kg dry		
Vanadium	< 1.0	1.0 mg/kg dry		
Zinc	< 2.0	2.0 mg/kg dry		
LCS (B3J2652-BS1)			Prepared: 2	2023-10-26, Analyzed: 2023-10-26
Aluminum	217	40 mg/kg dry	200	109 80-120
Antimony	2.05	0.10 mg/kg dry	2.00	102 80-120
Arsenic	21.4	0.30 mg/kg dry	20.0	107 80-120
Barium	2.1	1.0 mg/kg dry	2.00	105 80-120
Beryllium	2.29	0.10 mg/kg dry	2.00	114 80-120
Boron	24.0	2.0 mg/kg dry	20.0	120 80-120
Cadmium	2.09	0.040 mg/kg dry	2.00	105 80-120
Chromium	2.2	1.0 mg/kg dry	2.00	110 80-120
Cobalt	2.18	0.10 mg/kg dry	2.00	109 80-120
Copper	2.17	0.40 mg/kg dry	2.00	108 80-120
Iron	222	20.0 mg/kg dry	200	111 80-120
Lead	2.16	0.20 mg/kg dry	2.00	108 80-120
Lithium	2.30	0.10 mg/kg dry	2.00	115 80-120
Manganese	2.22	0.40 mg/kg dry	2.00	111 80-120
Mercury	0.221	0.040 mg/kg dry	0.200	110 80-120
Molybdenum	2.04	0.10 mg/kg dry	2.00	102 80-120
Nickel	2.16	0.60 mg/kg dry	2.00	108 80-120
Selenium	21.7	0.20 mg/kg dry	20.0	109 80-120
Silver	2.17	0.10 mg/kg dry	2.00	109 80-120
Strontium	2.22	0.20 mg/kg dry	2.00	111 80-120
Thallium	2.13	0.10 mg/kg dry	2.00	106 80-120
Tin	2.07	0.20 mg/kg dry	2.00	103 80-120
Tungsten	2.12	0.20 mg/kg dry	2.00	106 80-120
Uranium	2.18	0.050 mg/kg dry	2.00	109 80-120
Vanadium	2.1	1.0 mg/kg dry	2.00	107 80-120
Zinc	21.4	2.0 mg/kg dry	20.0	107 80-120
Reference (B3J2652-SRM1)			Prepared:	2023-10-26. Analyzed: 2023-10-26
Aluminum	13000	40 ma/ka day	12100	107 70-130

Caring About Results, Obviously.

Page 18 of 30

REPORTED TO	TO Thurber Engineering Ltd. (Vancouver)				WORK	ORDER	23J2	230	13:11
PROJECT	28847				REPOR	TED	2023	-10-30	
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier

Strong Acid Leachable Metals, Batch B3J2652, Continued

Reference (B3J2652-SRM1), Continued			Prepared	: 2023-10-26, Analyzed:	2023-10-26
Antimony	0.67	0.10 mg/kg dry	0.634	106	70-130
Arsenic	90.4	0.30 mg/kg dry	83.6	108	70-130
Barium	42.4	1.0 mg/kg dry	41.4	103	70-130
Beryllium	0.42	0.10 mg/kg dry	0.377	112	70-130
Chromium	72.8	1.0 mg/kg dry	66.0	110	70-130
Cobalt	11.6	0.10 mg/kg dry	10.8	107	70-130
Copper	22.3	0.40 mg/kg dry	20.3	110	70-130
Iron	22400	20.0 mg/kg dry	20400	110	70-130
Lead	18.0	0.20 mg/kg dry	16.7	108	70-130
Lithium	18.9	0.10 mg/kg dry	16.8	113	70-130
Manganese	350	0.40 mg/kg dry	319	110	70-130
Mercury	0.122	0.040 mg/kg dry	0.114	107	70-130
Molybdenum	0.65	0.10 mg/kg dry	0.607	107	70-130
Nickel	34.8	0.60 mg/kg dry	32.5	107	70-130
Silver	1.70	0.10 mg/kg dry	1.55	110	70-130
Strontium	23.8	0.20 mg/kg dry	22.5	106	70-130
Thallium	< 0.10	0.10 mg/kg dry	0.0765	114	70-130
Uranium	1.24	0.050 mg/kg dry	1.15	108	70-130
Vanadium	39.0	1.0 mg/kg dry	36.3	108	70-130
Zinc	43.0	2.0 mg/kg dry	39.7	108	70-130

Strong Acid Leachable Metals, Batch B3J2763

Plank (P2 12762 PL K1)			Propared: 2023 10 26 Applyz	rod: 2023 10 27	
Dialik (BSJ2703-DEKT)			Flepaleu. 2023-10-20, Allalyz	eu. 2023-10-27	
Aluminum	< 40	40 mg/kg dry			
Antimony	< 0.10	0.10 mg/kg dry			
Arsenic	< 0.30	0.30 mg/kg dry			
Barium	< 1.0	1.0 mg/kg dry			
Beryllium	< 0.10	0.10 mg/kg dry			
Boron	< 2.0	2.0 mg/kg dry			
Chromium	< 1.0	1.0 mg/kg dry			
Cobalt	< 0.10	0.10 mg/kg dry			
Copper	< 0.40	0.40 mg/kg dry			
Iron	< 20.0	20.0 mg/kg dry			
Lead	< 0.20	0.20 mg/kg dry			
Lithium	< 0.10	0.10 mg/kg dry			
Manganese	< 0.40	0.40 mg/kg dry			
Mercury	< 0.040	0.040 mg/kg dry			
Molybdenum	< 0.10	0.10 mg/kg dry			
Nickel	< 0.60	0.60 mg/kg dry			
Selenium	< 0.20	0.20 mg/kg dry			
Silver	< 0.10	0.10 mg/kg dry			
Strontium	< 0.20	0.20 mg/kg dry			
Thallium	< 0.10	0.10 mg/kg dry			
Tin	< 0.20	0.20 mg/kg dry			
Tungsten	< 0.20	0.20 mg/kg dry			
Uranium	< 0.050	0.050 mg/kg dry			
Vanadium	< 1.0	1.0 mg/kg dry			
Zinc	< 2.0	2.0 mg/kg dry			
LCS (B3J2763-BS1)			Prepared: 2023-10-26, Analyz	ed: 2023-10-27	
Aluminum	206	40 mg/kg dry	200 103	80-120	
Antimony	2.01	0.10 mg/kg dry	2.00 100	80-120	
Arsenic	20.5	0.30 mg/kg dry	20.0 103	80-120	
Barium	2.0	1.0 mg/kg dry	2.00 102	80-120	
Bervllium	2.15	0.10 ma/ka drv	2.00 107	80-120	

2.04

2.04

2.04

2.0

REPORTED TO PROJECT	IRTED TOThurber Engineering Ltd. (Vancouver)IECT28847					WORK ORDER REPORTED		23J2230 2023-10-30) 13:11	
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Strong Acid Leach	able Metals,Batch B3、	J2763, Continued	đ								
LCS (B3J2763-BS	1), Continued			Prepared	l: 2023-10-2	6, Analyze	d: 2023 - 1	0-27			
Boron		22.3	2.0 mg/kg dry	20.0		112	80-120				
Chromium		2.1	1.0 mg/kg dry	2.00		104	80-120				
Cobalt		2.05	0.10 mg/kg dry	2.00		103	80-120				
Copper		2.05	0.40 mg/kg dry	2.00		102	80-120				
ron		206	20.0 mg/kg dry	200		103	80-120				
Lead		2.02	0.20 mg/kg dry	2.00		101	80-120				
Lithium		2.18	0.10 mg/kg dry	2.00		109	80-120				
Manganese		2.08	0.40 mg/kg dry	2.00		104	80-120				
Mercury		0.217	0.040 mg/kg dry	0.200		109	80-120				
Molybdenum		1.96	0.10 mg/kg dry	2.00		98	80-120				
Nickel		2.03	0.60 mg/kg dry	2.00		101	80-120				
Selenium		19.7	0.20 mg/kg dry	20.0		98	80-120				
Silver		2.02	0.10 mg/kg dry	2.00		101	80-120				
Strontium		2.09	0.20 mg/kg dry	2.00		104	80-120				
Thallium		2.03	0.10 mg/kg dry	2.00		102	80-120				

0.20 mg/kg dry

0.20 mg/kg dry

0.050 mg/kg dry

1.0 mg/kg dry

2.00

2.00

2.00

2.00

Zinc	20.4	2.0 mg/kg dry	20.0	102 80	0-120
Reference (B3J2763-SRM1)			Prepared:	2023-10-26, Analyzed: 2	2023-10-27
Aluminum	12400	40 mg/kg dry	12100	103 70)-130
Antimony	0.64	0.10 mg/kg dry	0.634	101 70	0-130
Arsenic	82.4	0.30 mg/kg dry	83.6	99 70	D-130
Barium	40.4	1.0 mg/kg dry	41.4	98 70	D-130
Beryllium	0.42	0.10 mg/kg dry	0.377	113 70	D-130
Chromium	68.7	1.0 mg/kg dry	66.0	104 70	D-130
Cobalt	10.9	0.10 mg/kg dry	10.8	101 70	D-130
Copper	20.9	0.40 mg/kg dry	20.3	103 70	D-130
Iron	21400	20.0 mg/kg dry	20400	105 70	D-130
Lead	17.1	0.20 mg/kg dry	16.7	102 70	D-130
Lithium	19.4	0.10 mg/kg dry	16.8	115 70	D-130
Manganese	331	0.40 mg/kg dry	319	104 70	D-130
Mercury	0.118	0.040 mg/kg dry	0.114	104 70	D-130
Molybdenum	0.60	0.10 mg/kg dry	0.607	99 70	D-130
Nickel	31.8	0.60 mg/kg dry	32.5	98 70	D-130
Silver	1.62	0.10 mg/kg dry	1.55	105 70	D-130
Strontium	24.2	0.20 mg/kg dry	22.5	108 70	D-130
Thallium	< 0.10	0.10 mg/kg dry	0.0765	108 70	D-130
Uranium	1.16	0.050 mg/kg dry	1.15	101 70	D-130
Vanadium	38.2	1.0 mg/kg dry	36.3	105 70	0-130
Zinc	41.2	2.0 mg/kg dry	39.7	104 70	0-130

Strong Acid Leachable Metals, Batch B3J2774

Blank (B3J2774-BLK1)

Tin

Tungsten

Uranium

Vanadium

Prepared: 2023-10-27, Analyzed: 2023-10-27

102

102

102

102

80-120

80-120

80-120

80-120

Aluminum	< 40	40 mg/kg dry	
Antimony	< 0.10	0.10 mg/kg dry	
Arsenic	< 0.30	0.30 mg/kg dry	
Barium	< 1.0	1.0 mg/kg dry	
Beryllium	< 0.10	0.10 mg/kg dry	
Boron	< 2.0	2.0 mg/kg dry	
Chromium	< 1.0	1.0 mg/kg dry	
Cobalt	< 0.10	0.10 mg/kg dry	
Copper	< 0.40	0.40 mg/kg dry	

REPORTED TO	Thurber Engineering Ltd. (Vancouver)				WORK ORDER			23J2230		
PROJECT	28847				REPORTED			2023-10-30 13:11		
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	

Strong Acid Leachable Metals, Batch B3J2774, Continued

Blank (B3J2774-BLK1), Continued			Prepared:	2023-10-27, Analyze	d: 2023-10-27	
Iron	< 20.0	20.0 mg/kg dry				
Lead	< 0.20	0.20 mg/kg dry				
Lithium	< 0.10	0.10 mg/kg dry				
Manganese	< 0.40	0.40 ma/ka dry				
Mercury	< 0.040	0 040 mg/kg dry				
Molybdenum	< 0.10	0.10 mg/kg dry				
Nickel	< 0.60	0.60 mg/kg dry				
Selenium	< 0.20	0.20 mg/kg dry				
Silver	< 0.10	0.10 mg/kg dry				
Strontium	< 0.20	0.20 mg/kg dry				
Thallium	< 0.10	0.10 mg/kg dry				
Tin	< 0.20	0.20 mg/kg dry				
Tungsten	< 0.20					
Iranjum	< 0.050					
Vanadium	< 1.0	1.0 mg/kg dry				
Zinc	< 2.0	2.0 mg/kg dry				
	- 2.0	2.0 mg/ng ury				
LCS (B3J2774-BS1)			Prepared:	2023-10-27, Analyze	d: 2023-10-27	
Aluminum	193	40 mg/kg dry	200	96	80-120	
Antimony	1.91	0.10 mg/kg dry	2.00	95	80-120	
Arsenic	18.9	0.30 mg/kg dry	20.0	95	80-120	
Barium	2.0	1.0 mg/kg dry	2.00	98	80-120	
Beryllium	1.94	0.10 mg/kg dry	2.00	97	80-120	
Boron	19.8	2.0 mg/kg dry	20.0	99	80-120	
Chromium	2.0	1.0 mg/kg dry	2.00	98	80-120	
Cobalt	1.93	0.10 mg/kg dry	2.00	97	80-120	
Copper	1.95	0.40 mg/kg dry	2.00	97	80-120	
Iron	194	20.0 mg/kg dry	200	97	80-120	
Lead	1.91	0.20 mg/kg dry	2.00	95	80-120	
Lithium	1.99	0.10 mg/kg dry	2.00	99	80-120	
Manganese	2.00	0.40 mg/kg dry	2.00	100	80-120	
Mercury	0.205	0.040 mg/kg dry	0.200	103	80-120	
Molybdenum	1.89	0.10 mg/kg dry	2.00	94	80-120	
Nickel	1.98	0.60 mg/kg dry	2.00	99	80-120	
Selenium	18.9	0.20 mg/kg dry	20.0	94	80-120	
Silver	1.97	0.10 mg/kg dry	2.00	99	80-120	
Strontium	1.90	0.20 ma/ka dry	2.00	95	80-120	
Thallium	1.88	0.10 mg/kg dry	2.00	94	80-120	
Tin	1.93	0.20 mg/kg dry	2.00	96	80-120	
Tungsten	1.96	0.20 mg/kg dry	2.00	98	80-120	
Uranium	1.94	0.050 mg/kg dry	2.00	97	80-120	
Vanadium	1.9	1.0 ma/ka drv	2.00	95	80-120	
Zinc	18.7	2.0 mg/kg dry	20.0	94	80-120	
			D	0000 40 07 4 - 1		
Reference (B3J2774-SRM1)			Prepared:	2023-10-27, Analyze	d: 2023-10-27	
Aluminum	12100	40 mg/kg dry	12100	100	70-130	
Antimony	0.64	0.10 mg/kg dry	0.634	101	70-130	
Arsenic	85.9	0.30 mg/kg dry	83.6	103	70-130	
Barium	42.2	1.0 mg/kg dry	41.4	102	70-130	
Beryllium	0.38	0.10 mg/kg dry	0.377	100	70-130	
Chromium	68.5	1.0 mg/kg dry	66.0	104	70-130	
Cobalt	11.1	0.10 mg/kg dry	10.8	102	70-130	
Copper	21.8	0.40 mg/kg dry	20.3	108	70-130	
Iron	21300	20.0 mg/kg dry	20400	104	70-130	
Lead	17.3	0.20 mg/kg dry	16.7	103	70-130	
Lithium	17.6	0.10 mg/kg dry	16.8	105	70-130	
Manganese	325	0.40 mg/kg dry	319	102	70-130	

REPORTED TO PROJECT	Thurber Engineering Ltd. (Vancouver) 28847				WORK ORDER REPORTED		23J2 2023	23J2230 2023-10-30 13:11	
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier

Strong Acid Leachable Metals, Batch B3J2774, Continued

Reference (B3J2774-SRM1), Continued	Prepared: 2023-10-27, Analyzed: 2023-10-27				
Mercury	0.119	0.040 mg/kg dry	0.114	105 70-130	
Molybdenum	0.62	0.10 mg/kg dry	0.607	102 70-130	
Nickel	33.2	0.60 mg/kg dry	32.5	102 70-130	
Silver	1.68	0.10 mg/kg dry	1.55	109 70-130	
Strontium	21.4	0.20 mg/kg dry	22.5	95 70-130	
Thallium	< 0.10	0.10 mg/kg dry	0.0765	104 70-130	
Uranium	1.22	0.050 mg/kg dry	1.15	106 70-130	
Vanadium	37.7	1.0 mg/kg dry	36.3	104 70-130	
Zinc	40.9	2.0 mg/kg dry	39.7	103 70-130	

QC Qualifiers:

BLK Analyte concentration in the Method Blank is above the Reporting Limit (RL).

APPENDIX 3: REVISION HISTORY

REPORTED TO PROJECT	Thurber Eng 28847	gineering Ltd. (Vanco	uver)	WORK ORDER REPORTED	23J2230 2023-10-30 13:11
Sample ID	Changed	Change	Analysis	Analyte(s)	
23J2230-01	2023-10-27	Result Revised	Aluminum in Soil	Aluminum	
23J2230-01	2023-10-27	Result Revised	Antimony in Soil	Antimony	
23J2230-01	2023-10-27	Result Revised	Arsenic in Soil	Arsenic	
23J2230-01	2023-10-27	Result Revised	Barium in Soil	Barium	
23J2230-01	2023-10-27	Result Revised	Beryllium in Soil	Beryllium	
23J2230-01	2023-10-27	Result Revised	Boron in Soil	Boron	
23J2230-01	2023-10-27	Result Revised	Cadmium in Soil	Cadmium	
23J2230-01	2023-10-27	Result Revised	Chromium in Soil	Chromium	
23J2230-01	2023-10-27	Result Revised	Cobalt in Soil	Cobalt	
23J2230-01	2023-10-27	Result Revised	Copper in Soil	Copper	
23J2230-01	2023-10-27	Result Revised	Iron in Soil	Iron	
23J2230-01	2023-10-27	Result Revised	Lead in Soil	Lead	
23J2230-01	2023-10-27	Result Revised	Lithium in Soil	Lithium	
23J2230-01	2023-10-27	Result Revised	Manganese in Soil	Manganese	
23J2230-01	2023-10-27	Result Revised	Mercury in Soil	Mercury	
23J2230-01	2023-10-27	Result Revised	Molybdenum in Soil	Molybdenum	
23J2230-01	2023-10-27	Result Revised	Nickel in Soil	Nickel	
23J2230-01	2023-10-27	Result Revised	Selenium in Soil	Selenium	
23J2230-01	2023-10-27	Result Revised	Silver in Soil	Silver	
23J2230-01	2023-10-27	Result Revised	Strontium in Soil	Strontium	
23J2230-01	2023-10-27	Result Revised	Thallium in Soil	Thallium	
23J2230-01	2023-10-27	Result Revised	Tin in Soil	Tin	
23J2230-01	2023-10-27	Result Revised	Tungsten in Soil	Tungsten	
23J2230-01	2023-10-27	Result Revised	Uranium in Soil	Uranium	
23J2230-01	2023-10-27	Result Revised	Vanadium in Soil	Vanadium	
23J2230-01	2023-10-27	Result Revised	Zinc in Soil	Zinc	

Page 24 of 30

Page 25 of 30

Page 27 of 30

Page 28 of 30

Page 29 of 30

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Site: 49.311N 123.049W

User File Reference: Cloverley Elementary School

2023-10-20 16:47 UT

Requested by: Intisar Ahmed, Thurber Engineering Ltd.

Probability of exceedance per annum	0.000404	0.001	0.0021	0.01
Probability of exceedance in 50 years	2 %	5 %	10 %	40 %
Sa (0.05)	0.418	0.288	0.206	0.090
Sa (0.1)	0.636	0.440	0.316	0.139
Sa (0.2)	0.788	0.551	0.399	0.177
Sa (0.3)	0.788	0.556	0.404	0.177
Sa (0.5)	0.695	0.487	0.349	0.146
Sa (1.0)	0.395	0.271	0.189	0.075
Sa (2.0)	0.242	0.161	0.109	0.041
Sa (5.0)	0.077	0.045	0.027	0.009
Sa (10.0)	0.027	0.016	0.010	0.003
PGA (g)	0.342	0.240	0.173	0.075
PGV (m/s)	0.514	0.349	0.241	0.090

Notes: Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are highlighted in yellow. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. **These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.**

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada

Structural Commentaries (User's Guide - NBC 2015: Part 4 of Division B) Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

